用換元法解方程:
.
【答案】
分析:本題考查用換元法解分式方程的能力,設(shè)
,代入后,化為整式方程求解,求解后要注意檢驗.
解答:解:設(shè)
,則
,
原方程變形為y-
=2,
整理,得y
2-2y-3=0,
解得y
1=3,y
2=-1,
當(dāng)y
1=3時,
,解得x
1=-1,
當(dāng)y
2=-1時,
,解得x
2=1,
經(jīng)檢驗x
1=-1,x
2=1都是原方程的根.
∴原方程的根是x
1=-1,x
2=1.
點評:用換元法解分式方程是常用方法之一,它能夠使方程化繁為簡,化難為易,因此對能用此方法解的分式方程的特點應(yīng)該加以注意,并要能夠熟練變形整理.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來源:
題型:
用換元法解方程
(x+)2-(x+)=2,若設(shè)
a=x+,則方程可化為( 。
A、a2+a+2=0 |
B、a2-a+2=0 |
C、a2-a-2=0 |
D、a2+a-2=0 |
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:
用換元法解方程
-x2+2x=1時,如設(shè)
y=,則將原方程化為關(guān)于y的整式方程是
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:
用換元法解方程(x-
)
2-3x+
+2=0時,如果設(shè)x-
=y,那么原方程可轉(zhuǎn)化( 。
A、y2+3y+2=0 |
B、y2-3y-2=0 |
C、y2+3y-2=0 |
D、y2-3y+2=0 |
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:
解下列方程:
(1)(3x+2)(x+3)=x+14;
(2)用換元法解方程:(x2+x)2+(x2+x)=6.(可以設(shè)x2+x=t)
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:
用換元法解方程3(x
2+15x)
2+2(x
2+15x+1)=2時,設(shè)x
2+15x=y,原方程為關(guān)于y的一元二次方程的一般形式為
3y2+2y=0
3y2+2y=0
.
查看答案和解析>>