【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.

(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點(diǎn)P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過程).

【答案】
(1)解:把點(diǎn)A(3,1),點(diǎn)C(0,4)代入二次函數(shù)y=﹣x2+bx+c得,

解得

∴二次函數(shù)解析式為y=﹣x2+2x+4,

配方得y=﹣(x﹣1)2+5,

∴點(diǎn)M的坐標(biāo)為(1,5);


(2)解:設(shè)直線AC解析式為y=kx+b,把點(diǎn)A(3,1),C(0,4)代入得,

解得

∴直線AC的解析式為y=﹣x+4,如圖所示,對稱軸直線x=1與△ABC兩邊分別交于點(diǎn)E、點(diǎn)F

把x=1代入直線AC解析式y(tǒng)=﹣x+4解得y=3,則點(diǎn)E坐標(biāo)為(1,3),點(diǎn)F坐標(biāo)為(1,1)

∴1<5﹣m<3,解得2<m<4


(3)解:連接MC,作MG⊥y軸并延長交AC于點(diǎn)N,則點(diǎn)G坐標(biāo)為(0,5)

∵M(jìn)G=1,GC=5﹣4=1

∴MC= = ,

把y=5代入y=﹣x+4解得x=﹣1,則點(diǎn)N坐標(biāo)為(﹣1,5),

∵NG=GC,GM=GC,

∴∠NCG=∠GCM=45°,

∴∠NCM=90°,

由此可知,若點(diǎn)P在AC上,則∠MCP=90°,則點(diǎn)D與點(diǎn)C必為相似三角形對應(yīng)點(diǎn)

①若有△PCM∽△BDC,則有

∵BD=1,CD=3,

∴CP= = = ,

∵CD=DA=3,

∴∠DCA=45°,

若點(diǎn)P在y軸右側(cè),作PH⊥y軸,

∵∠PCH=45°,CP=

∴PH= =

把x= 代入y=﹣x+4,解得y= ,

∴P1 );

同理可得,若點(diǎn)P在y軸左側(cè),則把x=﹣ 代入y=﹣x+4,解得y=

∴P2 );

②若有△PCM∽△CDB,則有

∴CP= =3

∴PH=3 ÷ =3,

若點(diǎn)P在y軸右側(cè),把x=3代入y=﹣x+4,解得y=1;

若點(diǎn)P在y軸左側(cè),把x=﹣3代入y=﹣x+4,解得y=7

∴P3(3,1);P4(﹣3,7).

∴所有符合題意得點(diǎn)P坐標(biāo)有4個(gè),分別為P1 ),P2 ),P3(3,1),P4(﹣3,7).


【解析】(1)將點(diǎn)A、點(diǎn)C的坐標(biāo)代入函數(shù)解析式,即可求出b、c的值,通過配方法得到點(diǎn)M的坐標(biāo);(2)點(diǎn)M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點(diǎn)M在向下平移時(shí)與AC、AB相交時(shí)y的值,即可得到m的取值范圍;(3)由題意分析可得∠MCP=90°,則若△PCM與△BCD相似,則要進(jìn)行分類討論,分成△PCM∽△BDC或△PCM∽△CDB兩種,然后利用邊的對應(yīng)比值求出點(diǎn)坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的性質(zhì)的相關(guān)知識(shí),掌握對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:
(1)5x2+2x﹣1=0
(2)(x﹣2)2=2x﹣4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、、、按如圖方式排列.若規(guī)定(m,n)表示第m排從左向右第n個(gè)數(shù),則(7,3)所表示的數(shù)是__;(52)與(20,17)表示的兩數(shù)之積是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為,C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著的路線移動(dòng)即:沿著長方形移動(dòng)一周

寫出點(diǎn)B的坐標(biāo)______

當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).

在移動(dòng)過程中,當(dāng)點(diǎn)Px軸距離為5個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】最近,“校園安全”受到全社會(huì)的廣泛關(guān)注,重慶八中對部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為度;請補(bǔ)全條形統(tǒng)計(jì)圖
(2)若達(dá)到“了解”程度的人中有1名男生2名女生,達(dá)到“不了解”的程度的人中有1名男生和1名女生,若分別從達(dá)到“了解”程度和“不了解”的人中分別抽取1人參加校園安全知識(shí)競賽,請用樹狀圖或列表法求出恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線 L 過點(diǎn)C,點(diǎn) A,B 在直線 L 同側(cè),BD⊥L, AE⊥L,垂足分別為D,E

求證:△AEC≌△CDB

(2)類比探究:如圖 2,RtABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn) 90° AB’, 連接B’C,求AB’C 的面積

(3)拓展提升:如圖 3,等邊EBC ,EC=BC=3cm,點(diǎn) O BC 上且 OC=2cm,動(dòng)點(diǎn) P 從點(diǎn) E 沿射線EC 1cm/s 速度運(yùn)動(dòng),連接 OP,將線段 OP 繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn) 120°得到線段 OF,設(shè)點(diǎn) P 運(yùn)動(dòng)的時(shí)間為t 秒。

當(dāng)t= 時(shí),OF∥ED

若要使點(diǎn)F 恰好落在射線EB 上,求點(diǎn)P 運(yùn)動(dòng)的時(shí)間t

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,過C點(diǎn)作CE⊥BD于E,延長AF、EC交于點(diǎn)H,下列結(jié)論中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正確的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)PAOB的邊OB上的一點(diǎn),過點(diǎn)POB的垂線,交OA于點(diǎn)C;

(1) 過點(diǎn)COB的平行線CD

(2) 過點(diǎn)POA的垂線,垂足為H

(3) 線段PH的長度是點(diǎn)P 的距離,線段 的長度是點(diǎn)C到直線OB的距離.線段PC、PH、OC這三條線段大小關(guān)系是 (用“<”號(hào)連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,它表示甲乙兩人從同一個(gè)地點(diǎn)出發(fā)后的情況.到十點(diǎn)時(shí),甲大約走了13千米.根據(jù)圖象回答:

1)甲是幾點(diǎn)鐘出發(fā)?

2)乙是幾點(diǎn)鐘出發(fā),到十點(diǎn)時(shí),他大約走了多少千米?

3)到十點(diǎn)為止,哪個(gè)人的速度快?

4)兩人最終在幾點(diǎn)鐘相遇?

5)你能將圖象中得到信息,編個(gè)故事嗎?

查看答案和解析>>

同步練習(xí)冊答案