【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)E,過點(diǎn)E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長為(
A.6
B.7
C.8
D.9

【答案】D
【解析】解:∵∠ABC、∠ACB的平分線相交于點(diǎn)E, ∴∠MBE=∠EBC,∠ECN=∠ECB,
∵M(jìn)N∥BC,
∴∠EBC=∠MEB,∠NEC=∠ECB,
∴∠MBE=∠MEB,∠NEC=∠ECN,
∴BM=ME,EN=CN,
∴MN=ME+EN,
即MN=BM+CN.
∵BM+CN=9
∴MN=9,
故選:D.
由∠ABC、∠ACB的平分線相交于點(diǎn)E,∠MBE=∠EBC,∠ECN=∠ECB,利用兩直線平行,內(nèi)錯(cuò)角相等,利用等量代換可∠MBE=∠MEB,∠NEC=∠ECN,然后即可求得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,圓D與y軸相切于點(diǎn)C(0,4),與x軸相交于A、B兩點(diǎn),且AB=6.

(1)則D點(diǎn)的坐標(biāo)是 ( , ),圓的半徑為
(2)sin∠ACB=;經(jīng)過C、A、B三點(diǎn)的拋物線的解析式;
(3)設(shè)拋物線的頂點(diǎn)為F,證明直線FA與圓D相切;
(4)在x軸下方的拋物線上,是否存在一點(diǎn)N,使△CBN面積最大,最大值是多少,并求出N點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知正方形ABCD,直角三角形紙板的一個(gè)銳角頂點(diǎn)與點(diǎn)A重合,紙板繞點(diǎn)A旋轉(zhuǎn)時(shí),直角三角形紙板的一邊與直線CD交于E,分別過B、D作直線AE的垂線,垂足分別為F、G.
(1)當(dāng)點(diǎn)E在DC延長線時(shí),如圖①,求證:BF=DG﹣FG;
(2)將圖①中的三角板繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得圖②、圖③,此時(shí)BF、FG、DG之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出結(jié)論(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: ﹣|﹣2|+( 2﹣20160

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+3分別交x,y軸于點(diǎn)D,C,點(diǎn)B在x軸上,OB=OC,過點(diǎn)B作直線m∥CD.點(diǎn)P、Q分別為直線m和直線CD上的動(dòng)點(diǎn),且點(diǎn)P在x軸的上方,滿足∠POQ=45°

(1)則∠PBO=度;
(2)問:PBCQ的值是否為定值?如果是,請(qǐng)求出該定值;如果不是,請(qǐng)說明理由;
(3)求證:CQ2+PB2=PQ2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了深化課程改革,某校積極開展校本課程建設(shè),計(jì)劃成立“文學(xué)鑒賞”、“科學(xué)實(shí)驗(yàn)”、“音樂舞蹈”和“手工編織”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán).為此,隨機(jī)調(diào)查了本校各年級(jí)部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):

選擇意向

所占百分比

文學(xué)鑒賞

a

科學(xué)實(shí)驗(yàn)

35%

音樂舞蹈

b

手工編織

10%

其他

c

根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為;
(2)補(bǔ)全條形統(tǒng)計(jì)圖
(3)將調(diào)查結(jié)果繪成扇形統(tǒng)計(jì)圖,則“音樂舞蹈”社團(tuán)所在扇形所對(duì)應(yīng)的圓心角為;
(4)若該校共有1200名學(xué)生,試估計(jì)全校選擇“科學(xué)實(shí)驗(yàn)”社團(tuán)的學(xué)生人數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖,已知∠1=∠2,∠3=∠4,求證:AC∥DF,BC∥EF.證明過程如下:

∵∠1=∠2(已知),

∴AC∥DF(A.同位角相等,兩直線平行),

∴∠3=∠5(B.內(nèi)錯(cuò)角相等,兩直線平行).

∵∠3=∠4(已知)

∴∠5=∠4(C.等量代換),

∴BC∥EF(D.內(nèi)錯(cuò)角相等,兩直線平行).

上述過程中判定依據(jù)錯(cuò)誤的是(

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學(xué)生人數(shù)為 , 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m= , n= , 表示“足球”的扇形的圓心角是度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王乘公共汽車從甲地到相距40千米的乙地辦事,然后乘出租車返回,出租車的平均速度比公共汽車多20千米/時(shí),回來時(shí)路上所花時(shí)間比去時(shí)節(jié)省了 ,設(shè)公共汽車的平均速度為x千米/時(shí),則下面列出的方程中正確的是(
A. = ×
B. = ×
C. + =
D. =

查看答案和解析>>

同步練習(xí)冊(cè)答案