(2013•溧水縣二模)我區(qū)的某公司,用1800萬元購得某種產品的生產技術、生產設備,進行該產品的生產加工,已知生產這種產品每件還需成本費40元.經過市場調研發(fā)現(xiàn):該產品的銷售單價,需定在100元到200元之間為合理.當單價在100元時,銷售量為20萬件,當銷售單價超過100元,但不超過200元時,每件新產品的銷售價格每增加10元,年銷售量將減少1萬件;設銷售單價為x(元),年銷售量為y(萬件),年獲利為W(萬元).
(年利潤=年銷售總額-生產成本-投資成本)
(1)直接寫出y與x之間的函數(shù)關系式;
(2)求第一年的年獲利W與x之間的函數(shù)關系式,并請說明不論銷售單價定為多少,該公司投資的第一年肯定是虧損的,最小虧損是少?
(3)在使第一年虧損最小的前提下,若該公司希望到第二年的年底,彌補第一年的虧損后,兩年的總盈利為1490萬元,且使產品銷售量最大,銷售單價應定為多少元?
分析:(1)銷售量是用20萬件減去因價格上漲而導致銷量減小的量,據此可以列出函數(shù)關系式.
(2)根據條件,求出二次函數(shù)解析式,從中找出最值以及相應的自變量范圍.
(3)根據兩年的總盈利為1490萬元列出一元二次方程求解即可.
解答:解:(1)y=20-
x-100
10
=-0.1x+30;

(2)W=(x-40)(-0.1x+30)-1800
=-0.1x2+34x-3000
=-0.1(x-170)2-110…(5分)
∵不論x取何值,-0.1(x-170)2≤0,
∴W=-0.1(x-170)2-110<0,
即:不論銷售單價定為多少,該公司投資的第一年肯定是虧損 
∵100<x≤200
∴當x=170時,第一年最少虧損110萬元.

(3)依題意得
(x-40)(-0.1x+30)-110=1490  
解之得x1=140   x2=200  
∵k=-0.1<0,∴y隨x增大而減小,
∴要使銷量最大,售價要最低,即x=140元;
點評:此題考查了二次函數(shù)的應用,為數(shù)學建模題,借助二次函數(shù)及一元二次方程解決實際問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•溧水縣二模)點A1、A2、A3、…、An(n為正整數(shù))都在數(shù)軸上,點A1在原點O的左邊,且A1O=1;點A2在點A1的右邊,且A2A1=2;點A3在點A2的左邊,且A3A2=3;點A4在點A3的右邊,且A4A3=4;…,依照上述規(guī)律,點A2013所表示的數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溧水縣二模)若兩個相似三角形的相似比為1:4,則它們的周長比為
1:4
1:4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溧水縣二模)因式分解:2x2-4x+2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溧水縣二模)如圖,在△ABC中,AB=AC,D、E是△ABC內兩點,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,求BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溧水縣二模)計算:(
2
-1)2+
8
-(-2013)0

查看答案和解析>>

同步練習冊答案