【題目】甲、乙兩名自行車(chē)運(yùn)動(dòng)員同時(shí)從A地出發(fā)到B地,在直線公路上進(jìn)行騎自行車(chē)訓(xùn)練.如圖,反映了甲、乙兩名自行車(chē)運(yùn)動(dòng)員在公路上進(jìn)行訓(xùn)練時(shí)的行駛路程S(千米)與行駛時(shí)間t(小時(shí))之間的關(guān)系,下列四種說(shuō)法:①甲的速度為40千米/小時(shí);②乙的速度始終為50千米/小時(shí);③行駛1小時(shí)時(shí)乙在甲前10千米;④3小時(shí)時(shí)甲追上乙.其中正確的個(gè)數(shù)有(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

【答案】C.

【解析】

試題解析:由圖象可得:甲的速度為120÷3=40千米/小時(shí),故①正確;乙的速度在0≤t≤1時(shí),速度是50千米/小時(shí),而在t>1時(shí),速度為÷(3-1)=35千米/小時(shí),故②錯(cuò)誤;行駛1小時(shí)時(shí),甲的距離為40千米,乙的距離為50千米,所以乙在甲前10千米,故③正確;3小時(shí)甲與乙相遇,即3小時(shí)時(shí)甲追上乙,故④正確;

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)潛江市創(chuàng)建全國(guó)文明城市號(hào)召,某單位不斷美化環(huán)境,擬在一塊矩形空地上修建綠色植物園,其中一邊靠墻,可利用的墻長(zhǎng)不超過(guò)18m,另外三邊由36m長(zhǎng)的柵欄圍成.設(shè)矩形ABCD空地中,垂直于墻的邊AB=xm,面積為ym2(如圖).

1)求yx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

2)若矩形空地的面積為160m2,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.

(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論;

(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫(xiě)出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的一條邊BC的長(zhǎng)為5,另兩邊AB,AC的長(zhǎng)分別為關(guān)于x的一元二次方程的兩個(gè)實(shí)數(shù)根。

1)求證:無(wú)論k為何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;

2)當(dāng)k=2時(shí),請(qǐng)判斷△ABC的形狀并說(shuō)明理由;

3k為何值時(shí),△ABC是等腰三角形,并求△ABC的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì)盆景的平均每盆利潤(rùn)是160,花卉的平均每盆利潤(rùn)是19調(diào)研發(fā)現(xiàn):

①盆景每增加1,盆景的平均每盆利潤(rùn)減少2;每減少1盆景的平均每盆利潤(rùn)增加2;②花卉的平均每盆利潤(rùn)始終不變.

小明計(jì)劃第二期培植盆景與花卉共100,設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在四邊形 ABCD 中,∠A+∠C=180°,DB 平分∠ADC.

(1)如圖 1求證:AB=BC

(2)如圖 2,若∠ADB=60°,,試判斷△ABC 的形狀,并說(shuō)明理由.

(3)如圖 3,在(2)得條件下,在 AB 上取一點(diǎn) E, BC 上取一點(diǎn) F,連接 CEAF 交于點(diǎn) M,連接 EF,若∠CMF=60°,AD=EF=7CD=8(CFBF),求 AE 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),PA=3,PB=4, PC=5,若將△APB繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)后得到△CQB,∠APB的度數(shù)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,BD是它的一條對(duì)角線,過(guò)A、C兩點(diǎn)作AEBD,CFBD,垂足分別為E、F,延長(zhǎng)AE、CF分別交CD、AB于M、N。

(1求證:四邊形CMAN是平行四邊形。

(2已知DE=4,F(xiàn)N=3,求BN的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑的與邊BC,AC分別交于D、E,DF的切線,交AC于點(diǎn)F

1)求證:DFAC;

2)若AE4,DF3,求的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案