【題目】已知:C是線(xiàn)段AB所在平面內(nèi)任意一點(diǎn),分別以AC、BC為邊,在AB同側(cè)作等邊三角形ACE和BCD,聯(lián)結(jié)AD、BE交于點(diǎn)P.

(1)如圖1,當(dāng)點(diǎn)C在線(xiàn)段AB上移動(dòng)時(shí),線(xiàn)段AD與BE的數(shù)量關(guān)系是:
(2)如圖2,當(dāng)點(diǎn)C在直線(xiàn)AB外,且∠ACB<120°,上面的結(jié)論是否還成立?若成立請(qǐng)證明,不成立說(shuō)明理由.
(3)在(2)的條件下,∠APE大小是否隨著∠ACB的大小發(fā)生變化而發(fā)生變化,若變化寫(xiě)出變化規(guī)律,若不變,請(qǐng)求出∠APE的度數(shù).

【答案】
(1)解:∵△ACE和△BCD都是等邊三角形,
∴∠ACE=∠DCB=60°,CA=CE,CD=CB,
∴∠ACE+∠DCE=∠DCB+∠DCE,即∠ACD=∠ECB,
在△ECB和△ACD中,

∴△ECB≌△ACD,
∴AD=BE,
故答案為:AD=BE
(2)

解:AD=BE成立.

證明:∵△ACE和△BCD是等邊三角形,

∴EC=AC,BC=DC,

∠ACE=∠BCD=60°,

∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD,

在△ECB和△ACD中,

∴△ECB≌△ACD(SAS),

∴BE=AD;


(3)

解:∠APE不隨著∠ACB的大小發(fā)生變化,始終是60°,

如圖2

設(shè)BE與AC交于Q,

由(2)可知△ECB≌△ACD,

∴∠BEC=∠DAC,

又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°,

∴∠APQ=∠ECQ=60°,即∠APE=60°.


【解析】(1)根據(jù)等邊三角形的性質(zhì)得到∠ACE=∠DCB=60°,CA=CE,CD=CB,根據(jù)全等三角形的判定定理得到△ECB≌△ACD,根據(jù)全等三角形的性質(zhì)證明;(2)根據(jù)等邊三角形的性質(zhì)得到∠ACE=∠DCB=60°,CA=CE,CD=CB,根據(jù)全等三角形的判定定理得到△ECB≌△ACD,根據(jù)全等三角形的性質(zhì)證明;(3)根據(jù)全等三角形的性質(zhì)得到∠BEC=∠DAC,根據(jù)三角形內(nèi)角和定理計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)(k0)

(1)當(dāng)k=時(shí),求這個(gè)二次函數(shù)的頂點(diǎn)坐標(biāo);

(2)求證:關(guān)于x的一元次方程有兩個(gè)不相等的實(shí)數(shù)根;

(3)如圖,該二次函數(shù)與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于C點(diǎn),P是y軸負(fù)半軸上一點(diǎn),且OP=1,直線(xiàn)AP交BC于點(diǎn)Q,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有16筐白菜,以每筐30千克為標(biāo)準(zhǔn),超過(guò)或不足的分別用正、負(fù)來(lái)表示,記錄如下:

(1)16筐白菜中,最重的一筐比最輕的一筐要重多少千克?
(2)與標(biāo)準(zhǔn)質(zhì)量比較,16筐白菜總計(jì)超過(guò)或不足多少千克?
(3)若白菜每千克售價(jià)3元,則出售這16筐白菜可賣(mài)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接春節(jié),某縣準(zhǔn)備用燈籠美化濱河路,許采用A、B兩種不同造型的燈籠共600個(gè).且A型燈籠的數(shù)量比B型燈籠的 多15個(gè).
(1)求A、B兩種燈籠各需多少個(gè)?
(2)已知A、B型燈籠的單價(jià)分別為40元、30元,則這次美化工程需多少費(fèi)用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中:
(1)用直尺和圓規(guī),在AB上找一點(diǎn)D,使點(diǎn)D到B、C兩點(diǎn)的距離相等(不寫(xiě)作法.保留作圖痕跡)
(2)連接CD,已知CD=AC,∠B=25°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一個(gè)奇數(shù)是123,則m的值是( )
A.9
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明一家三口國(guó)慶節(jié)隨旅游團(tuán)去九寨溝旅游,共花費(fèi)人民幣5600元,他把旅途費(fèi)用支出情況制成了如下的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問(wèn)題:

(1)哪一部分支出的費(fèi)用占整個(gè)支出的 ?
(2)小明一家在食宿上用去多少元?
(3)小明一家支出的路費(fèi)共多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:∠MON=36°,OE平分∠MON,點(diǎn)A,B分別是射線(xiàn)OM,OE,上的動(dòng)點(diǎn)(A,B不與點(diǎn)O重合),點(diǎn)D是線(xiàn)段OB上的動(dòng)點(diǎn),連接AD并延長(zhǎng)交射線(xiàn)ON于點(diǎn)C,設(shè)∠OAC=x,

(1)如圖1,若AB∥ON,則
①∠ABO的度數(shù)是;
②當(dāng)∠BAD=∠ABD時(shí),x=;
當(dāng)∠BAD=∠BDA時(shí),x=;
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個(gè)相等的角?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案