我市某工藝廠為配合奧運(yùn)會(huì),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件) | …… | 30 | 40 | 50 | 60 | …… |
每天銷售量y(件) | …… | 500 | 400 | 300 | 200 | …… |
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門(mén)規(guī)定,該工藝品銷售單價(jià)最高不能超過(guò)45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?
分析 (1)從表格中的數(shù)據(jù)我們可以看出當(dāng)x增加10時(shí),對(duì)應(yīng)y的值減小100,所以y與x之間可能是一次函數(shù)的關(guān)系,我們可以根據(jù)圖象發(fā)現(xiàn)這些點(diǎn)在一條直線上,所以y與x之間是一次函數(shù)的關(guān)系,然后設(shè)出一次函數(shù)關(guān)系式,求出其關(guān)系式.
(2)利用二次函數(shù)的知識(shí)求最大值.
解 (1)畫(huà)圖如圖;
由圖可猜想y與x是一次函數(shù)關(guān)系,
設(shè)這個(gè)一次函數(shù)為y=kx+b(k≠0)
∵這個(gè)一次函數(shù)的圖象經(jīng)過(guò)(30,500)、(40,400)這兩點(diǎn),
∴,解得
∴函數(shù)關(guān)系式是:y=-10x+800.
(2)設(shè)工藝廠試銷該工藝品每天獲得的利潤(rùn)是W元,依題意得
W=(x-20)(-10x+800)
=-10x2+1 000x-16 000
=-10(x-50) 2+9 000
∴當(dāng)x=50時(shí),W有最大值9 000.
所以,當(dāng)銷售單價(jià)定為50元∕件時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大,最大利潤(rùn)是9 000元.
(3)對(duì)于函數(shù) W=-10(x-50)2+9 000,
當(dāng)x≤45時(shí),W的值隨著x值的增大而增大,銷售單價(jià)定為45元∕件時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
銷售單價(jià)x(元/件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
銷售單價(jià)x(元/件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
銷售單價(jià)x(元∕件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
銷售單價(jià)x(元/件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com