如圖1,在平面直角坐標系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點P是OA邊上的動點(與點O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當?shù)狞cE,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設P(x,0),E(0,y),求y關于x的函數(shù)關系式,并求y的最大值;
(2)如圖2,若翻折后點D落在BC邊上,求過點P、B、E的拋物線的函數(shù)關系式;
(3)在(2)的情況下,在該拋物線上是否存在點Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點Q的坐標.
(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,則∠BPE=90度.
∴∠OPE+∠APB=90°.
又∵∠APB+∠ABP=90°,
∴∠OPE=∠PBA.
∴Rt△POERt△BPA.
PO
OE
=
BA
AP

x
y
=
3
4-x

∴y=
1
3
x(4-x)=-
1
3
x2+
4
3
x(0<x<4).
且當x=2時,y有最大值
4
3


(2)由已知,△PAB、△POE均為等腰直角三角形,可得P(1,0),E(0,1),B(4,3).
設過此三點的拋物線為y=ax2+bx+c,則
c=1
a+b+c=0
16a+4b+c=3

a=
1
2
b=-
3
2
c=1

y=
1
2
x2-
3
2
x+1.

(3)由(2)知∠EPB=90°,即點Q與點B重合時滿足條件.
直線PB為y=x-1,與y軸交于點(0,-1).
將PB向上平移2個單位則過點E(0,1),
∴該直線為y=x+1.
y=x+1
y=
1
2
x2-
3
2
x+1

x=5
y=6

∴Q(5,6).
故該拋物線上存在兩點Q(4,3)、(5,6)滿足條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+mx+n與x軸交于A、B兩點,與y軸交于C點,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,2),連接BC、AD.
(1)求C點的坐標及拋物線的解析式;
(2)將△BCH繞點B按順時針旋轉(zhuǎn)90°后再沿x軸對折得到△BEF(點C與點E對應),判斷點E是否落在拋物線上,并說明理由;
(3)設過點E的直線交AB邊于點P,交CD邊于點Q.問是否存在點P,使直線PQ分梯形ABCD的面積為1:3兩部分?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是自動噴灌設備的水管,點A在地面,點B高出地面1.5米.在B處有一自動旋轉(zhuǎn)的噴水頭,在每一瞬間,噴出的水流呈拋物線狀,噴頭B與水流最高點C的連線與水平線成45°角,水流的最高點C與噴頭B高出2米,在如圖的坐標系中,水流的落地點D到點A的距離是______米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
3
8
x2-
3
4
x+c分別交x軸的負半軸和正半軸于點A(x1,0)、B(x2,0),交y軸的負軸于點C,且tan∠OAC=2tan∠OBC,動點P從點A出發(fā)向終點B運動,同時動點Q從點B出發(fā)向終點C運動,P、Q的運動速度均為每秒1個單位長度,且當其中有一個點到達終點時,另一個點也隨之停止運動,設運動的時間是t秒.

(1)試說明OB=2OA;
(2)求拋物線的解析式;
(3)當t為何值時,△PBQ是直角三角形?
(4)當t為何值時,△PBQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于C點.
(1)直接寫出拋物線的解析式及其頂點Q的坐標;
(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小.請在圖中畫出點P的位置,并求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC=5,BC=6,動點P從點A出發(fā)沿AB向點B移動,(點P與點A、B不重合),作PDBC交AC于點D,在DC上取點E,以DE、DP為鄰邊作平行四邊形PFED,使點F到PD的距離FH=
1
6
PD
,連接BF,設AP=x.
(1)△ABC的面積等于______;
(2)設△PBF的面積為y,求y與x的函數(shù)關系,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=ax2+4x+a的最大值是3,則a的值是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

3
16
可表示成不同的隨機事件發(fā)生的概率,請你設計一種實驗,使某種事件發(fā)生的概率是
3
16
.列出圖表表示.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

下表給出了代數(shù)式x2+bx+c與x的一些對應值:
x-101234
X2+bx+c3-13
(1)根據(jù)表格中的數(shù)據(jù),確定b、c的值,并填齊表格中空白處的對應值;
(2)代數(shù)式x2+bx+c是否有最小值?如果有,求出最小值;如果沒有,請說明理由;
(3)設y=x2+bx+c的圖象與x軸的交點為A、B兩點(A點在B點左側),與y軸交于點C,P點為線段AB上一動點,過P點作PEAC交BC于E,連接PC,當△PEC的面積最大時,求P點的坐標.

查看答案和解析>>

同步練習冊答案