半徑為5的⊙O的圓心在原點O,則點P(-3,4)與⊙O的位置關(guān)系是


  1. A.
    點P在⊙O外
  2. B.
    點P在⊙O上
  3. C.
    點P在⊙O內(nèi)
  4. D.
    無法判斷
B
分析:本題應(yīng)先由勾股定理求得點P到圓心O的距離,再根據(jù)點P與圓心的距離與半徑的大小關(guān)系,來判斷出點P與⊙O的位置關(guān)系.
當(dāng)d>r時,點在圓外;
當(dāng)d=r時,點在圓上;
當(dāng)d<r時,點在圓內(nèi).
解答:∵點P的坐標(biāo)為(-3,4),
∴由勾股定理得,點P到圓心O的距離==5,
∴點P在⊙O上,故選B.
點評:本題考查了點與圓的位置關(guān)系:①點P在⊙O上;②點P在⊙O內(nèi);③點P在⊙O外.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,∠C=90°,AC=4,BC=3.半徑為1的圓的圓心P以1個單位/s的速度由點A沿AC方向在AC上移動,設(shè)移動時間為t(單位:s).
(1)當(dāng)t為何值時,⊙P與AB相切;
(2)作PD⊥AC交AB于點D,如果⊙P和線段BC交于點E,證明:精英家教網(wǎng)當(dāng)t=
165
s
時,四邊形PDBE為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知在直角坐標(biāo)系中,半徑為2的圓的圓心坐標(biāo)為(3,-3),當(dāng)該圓向上平移
1或5
個單位時,它與x軸相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 

②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 
;
(2)若正多邊形為正方形,扇形的圓心角α=90°時,①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為
 
;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為
 
時,正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為
 
時,正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點,且與兩坐標(biāo) 軸分別交于A、B、C、D四點.拋物線y=ax2+bx+c與y軸交于點D,與直線y=x交于點M、N,且MA、NC分別與圓O相切于點A和點C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點B作圓O的切線交DC的延長線于點P,在拋物線上找一點Q,使△BDQ的面積與△BDP的面積相等,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
(2)若正多邊形為正方形,扇形的圓心角α=90°時,①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為________;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為________時,正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為________時,正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.

查看答案和解析>>

同步練習(xí)冊答案