如圖,AE∥CF,AG、CG分別平分∠EAC和∠FCA,過點(diǎn)G的直線BD⊥AE,交AE于B,交CF于D,求證:AB+CD=AC.

證明:過點(diǎn)G作GH⊥AC于點(diǎn)H,
∵AE∥CF,BD⊥AE,
∴GD⊥CD,GD⊥AB,
∵AG、CG分別平分∠EAC和∠FCA,
∴AB=AH,CD=CH,
∴AB+CD=AH+CH=AC.
分析:首先過點(diǎn)G作GH⊥AC于點(diǎn)H,由AE∥CF,BD⊥AE,可得GD⊥CD,GD⊥AB,又由AG、CG分別平分∠EAC和∠FCA,根據(jù)角平分線的性質(zhì),即可證得結(jié)論.
點(diǎn)評:此題考查了角平分線的性質(zhì)與垂線的性質(zhì).此題難度不大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AE=CF,AD∥BC,AD=CB.問:△ADF與△CBE全等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AE=CF,∠DAF=∠BCE,AD=CB,問△ADF與△CBE全等嗎?請說明理由.
如果將△BEC沿CA方向平移,可得下列三種圖形.如果上述條件不變,結(jié)論仍成立嗎?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AE∥CF,AG、CG分別平分∠EAC和∠FCA,過點(diǎn)G的直線BD⊥AE,交AE于B,交CF于D,求證:AB+CD=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,AE=CF,AD∥BC,AD=CB.問:△ADF與△CBE全等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AE=CF,∠DAF=∠BCE,AD=CB,問△ADF與△CBE全等嗎?請說明理由.
如果將△BEC沿CA方向平移,可得下列三種圖形.如果上述條件不變,結(jié)論仍成立嗎?請說明理由.

精英家教網(wǎng)
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案