【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過程).
【答案】
(1)
解:把點A(3,1),點C(0,4)代入二次函數(shù)y=﹣x2+bx+c得,
解得
∴二次函數(shù)解析式為y=﹣x2+2x+4,
配方得y=﹣(x﹣1)2+5,
∴點M的坐標(biāo)為(1,5);
(2)
解:設(shè)直線AC解析式為y=kx+b,把點A(3,1),C(0,4)代入得,
解得
∴直線AC的解析式為y=﹣x+4,如圖所示,對稱軸直線x=1與△ABC兩邊分別交于點E、點F
把x=1代入直線AC解析式y(tǒng)=﹣x+4解得y=3,則點E坐標(biāo)為(1,3),點F坐標(biāo)為(1,1)
∴1<5﹣m<3,解得2<m<4;
(3)
解:連接MC,作MG⊥y軸并延長交AC于點N,則點G坐標(biāo)為(0,5)
∵M(jìn)G=1,GC=5﹣4=1
∴MC= = = ,
把y=5代入y=﹣x+4解得x=﹣1,則點N坐標(biāo)為(﹣1,5),
∵NG=GC,GM=GC,
∴∠NCG=∠GCM=45°,
∴∠NCM=90°,
由此可知,若點P在AC上,則∠MCP=90°,則點D與點C必為相似三角形對應(yīng)點
①若有△PCM∽△BDC,則有
∵BD=1,CD=3,
∴CP= = = ,
∵CD=DA=3,
∴∠DCA=45°,
若點P在y軸右側(cè),作PH⊥y軸,
∵∠PCH=45°,CP=
∴PH= =
把x= 代入y=﹣x+4,解得y= ,
∴P1( );
同理可得,若點P在y軸左側(cè),則把x=﹣ 代入y=﹣x+4,解得y=
∴P2( , );
②若有△PCM∽△CDB,則有
∴CP= =3
∴PH=3 ÷ =3,
若點P在y軸右側(cè),把x=3代入y=﹣x+4,解得y=1;
若點P在y軸左側(cè),把x=﹣3代入y=﹣x+4,解得y=7
∴P3(3,1);P4(﹣3,7).
∴所有符合題意得點P坐標(biāo)有4個,分別為P1( ),P2( , ,P3(3,1),P4(﹣3,7).
【解析】本題考查了二次函數(shù)的圖象與性質(zhì)、一次函數(shù)解析式及相似三角形性質(zhì),解題的關(guān)鍵是分類討論三角形相似的不同情況,結(jié)合特殊角的使用來求出點P的坐標(biāo).(1)將點A、點C的坐標(biāo)代入函數(shù)解析式,即可求出b、c的值,通過配方法得到點M的坐標(biāo);(2)點M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點M在向下平移時與AC、AB相交時y的值,即可得到m的取值范圍;(3)由題意分析可得∠MCP=90°,則若△PCM與△BCD相似,則要進(jìn)行分類討論,分成△PCM∽△BDC或△PCM∽△CDB兩種,然后利用邊的對應(yīng)比值求出點坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個小立方塊,每一個面上分別寫著數(shù)字1、2、3、4、5、6,有三個人分別從不同角度觀察的結(jié)果如圖所示,問這個小立方塊相對的兩個面上的數(shù)字分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校對教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測藥物8分鐘燃畢,此時空氣中每立方米含藥量為6毫克,請根據(jù)題中所提供的信息,回答下列問題
(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為,自變量x的取值范圍是;藥物燃燒完后,y與x的函數(shù)關(guān)系式為;
(2)研究表明,當(dāng)空氣中的每立方米的含藥量低于1.6毫克時學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過幾分鐘后,學(xué)生才能回到教室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效地殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分別以點A,B為圓心,大于線段AB長度一半的長為半徑作弧,相交于點E,F(xiàn),過點E,F(xiàn)作直線EF,交AB于點D,連結(jié)CD,則CD的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= (k≠0)的圖象經(jīng)過A,B兩點,過點A作AC⊥x軸,垂足為C,過點B作BD⊥x軸,垂足為D,連接AO,連接BO交AC于點E,若OC=CD,四邊形BDCE的面積為2,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對稱軸為直線x= 的拋物線經(jīng)過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A
(1)求拋物線的解析式;
(2)若點P為第一象限內(nèi)拋物線上的一點,設(shè)四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A的坐標(biāo)為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點B的橫坐標(biāo)為x,點C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程組與證明
(1)解方程組: .
(2)如圖,Rt△ABC中,∠ACB=90°,將Rt△ABC向下翻折,使點A與點C重合,折痕為DE.求證:DE∥BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com