我們給出如下定義:若一個四邊形的兩條對角線相等,則稱這個四邊形為等對角線四邊形.請解答下列問題:
(1)寫出你所學過的特殊四邊形中是等對角線四邊形的兩種圖形的名稱;
(2)探究:當?shù)葘蔷四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和與其中一條對角線的大小關系,并證明你的結論.
【答案】分析:(1)等腰梯形、矩形、正方形,任選兩個即可;
(2)等對角線四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和大于或等于一條對角線的長.分兩種情況證明:當BC與CE不在同一條直線上時,60°角所對的兩邊之和大于其中一條對角線的長;當BC與CE在同一條直線上時60°角所對的兩邊之和等于其中一條對角線的長.
解答:解:(1)等腰梯形、矩形、正方形.
(2)結論:等對角線四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和大于或等于一條對角線的長.
已知:四邊形ABCD中,對角線AC,BD交于點O,AC=BD,
且∠AOD=60度.
求證:BC+AD≥AC.
證明:過點D作DF∥AC,在DF上截取DE,使DE=AC.
連接CE,BE.
故∠EDO=60°,四邊形ACED是平行四邊形.
∵AC=DE,AC=BD,
∴DE=BD,
∵∠EDO=60°,
∴△BDE是等邊三角形.
所以DE=BE=AC.
①當BC與CE不在同一條直線上時(如圖1),

在△BCE中,有BC+CE>BE.
所以BC+AD>AC.
②當BC與CE在同一條直線上時(如圖2),
則BC+CE=BE.
因此BC+AD=AC
綜合①、②,得BC+AD≥AC.
即等對角線四邊形中兩條對角線所夾角為60°時,這對60°角所對的兩邊之和大于或等于其中一條對角線的長.
點評:本題綜合考查了平行四邊形的判定和三角形的有關知識,解答此類題的關鍵是要突破思維定勢的障礙,運用發(fā)散思維,多方思考,探究問題在不同條件下的不同結論,挖掘它的內在聯(lián)系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、我們給出如下定義:若一個四邊形的兩條對角線相等,則稱這個四邊形為等對角線四邊形.請解答下列問題:
(1)寫出你所學過的特殊四邊形中是等對角線四邊形的兩種圖形的名稱;
(2)探究:當?shù)葘蔷四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和與其中一條對角線的大小關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)除了正方形外,寫出你所學過的特殊四邊形中是勾股四邊形的兩種圖形的名稱:
矩形、直角梯形
;
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你畫出以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB,并寫出點M的坐標;
(3)如圖2,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于O點,P是線段DE上任意一點.求證:四邊形OBPE是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學過的特殊四邊形中是勾股四邊形的兩種圖形的名稱
矩形
,
正方形

(2)如圖,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你畫出以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所知道的特殊四邊形中是勾股四邊形的兩種圖形的名稱
正方形
,
長方形

(2)如下圖(1),請你在圖中畫出以格點為頂點,OA、OB為勾股邊,且對角線相同的所有勾股四邊形OAMB.
(3)如圖(2),以△ABC邊AB作如圖正三角形ABD,∠CBE=60°,且BE=BC,連接DE、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們給出如下定義:若一個四邊形ABCD中AC⊥BD,BD平分AC,則稱這個四邊形為箏形四邊形.
(1)小明說:“箏形四邊形一定是菱形”.你認為小明的說法是否正確?若正確請說明理由;若不正確,請舉個反例說明.
(3)在箏形ABCD中,AD=CD,AB=BC,若∠ADC=∠ABC,tan∠DAC=1.求證:箏形ABCD是正方形.

查看答案和解析>>

同步練習冊答案