(2007•煙臺)生活中,有人喜歡把傳送的便條折成形狀,折疊過程是這樣的(陰影部分表示紙條的反面):如果由信紙折成的長方形紙條(圖①)長為26cm,寬為xcm,分別回答下列問題:
(1)為了保證能折成圖④的形狀(即紙條兩端均超出點(diǎn)P),試求x的取值范圍;
(2)如果不但要折成圖④的形狀,而且為了美觀,希望紙條兩端超出點(diǎn)P的長度相等,即最終圖形是軸對稱圖形,試求在開始折疊時起點(diǎn)M與點(diǎn)A的距離(用x表示).
【答案】分析:(1)按圖中方式折疊后可得到除去兩端,紙條使用的長度為5x,那么紙條使用的長度應(yīng)大于0,小于紙條總長度.
(2)是軸對稱圖形,那么AM=AP+x.
解答:解:(1)由折紙過程可知0<5x<26,
∴0<x<.  (4分)

(2)∵圖④為軸對稱圖形,
∴AM=+x=13-,
即點(diǎn)M與點(diǎn)A的距離是(13-)cm.  (9分)
點(diǎn)評:本題考查學(xué)生的動手操作能力,難點(diǎn)是得到紙條除去兩端使用的紙條的長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2007•宣武區(qū)一模)在日常生活中如取款、上網(wǎng)等都需要密碼.有一種用“因式分解”法產(chǎn)生的密碼,方便記憶.原理是:如對于多項(xiàng)式x4-y4,因式分解的結(jié)果是(x-y)(x+y)(x2+y2),若取x=9,y=9時,則各個因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作為一個六位數(shù)的密碼.對于多項(xiàng)式4x3-xy2,取x=10,y=10時,寫出一個用上述方法產(chǎn)生的密碼,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•煙臺)如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(-4,0),B點(diǎn)坐標(biāo)為(1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P與y軸的負(fù)半軸交于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線對應(yīng)的函數(shù)表達(dá)式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),求直線MC對應(yīng)的函數(shù)表達(dá)式;
(3)試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省煙臺市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•煙臺)如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(-4,0),B點(diǎn)坐標(biāo)為(1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P與y軸的負(fù)半軸交于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線對應(yīng)的函數(shù)表達(dá)式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),求直線MC對應(yīng)的函數(shù)表達(dá)式;
(3)試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省煙臺市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•煙臺)生活中,有人喜歡把傳送的便條折成形狀,折疊過程是這樣的(陰影部分表示紙條的反面):如果由信紙折成的長方形紙條(圖①)長為26cm,寬為xcm,分別回答下列問題:
(1)為了保證能折成圖④的形狀(即紙條兩端均超出點(diǎn)P),試求x的取值范圍;
(2)如果不但要折成圖④的形狀,而且為了美觀,希望紙條兩端超出點(diǎn)P的長度相等,即最終圖形是軸對稱圖形,試求在開始折疊時起點(diǎn)M與點(diǎn)A的距離(用x表示).

查看答案和解析>>

同步練習(xí)冊答案