在等腰梯形ABCD中,AD∥BC,∠B=45°,若AD=4cm,AB=8cm,試求出此梯形的周長和面積.

 

【答案】

(8+20)cm,(48+32)cm2

【解析】

試題分析:過A、D點(diǎn)作梯形的高AE、DF,根據(jù)等腰直角三角形性質(zhì)可求得BE、AE的長,從而可以求得結(jié)果.

過A、D點(diǎn)作梯形的高AE、DF

∵等腰梯形ABCD中,∠B=45°,AB=8cm

∴BE=AE=4cm

∵AD=4cm

∴BC=4+8cm

∴梯形的周長=(8+20)cm,面積=(AD+BC)×AE=(48+32)cm2

考點(diǎn):等腰梯形的性質(zhì)

點(diǎn)評:等腰梯形的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點(diǎn),一般難度不大,需熟練掌握.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,則下底BC的長為
7
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,點(diǎn)P為BC邊上任意一點(diǎn),且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分別是E、F、G,請你探索PE、PF、BG的長度之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E為邊BC上一點(diǎn),且AE=DC.
(1)求證:四邊形AECD是平行四邊形;
(2)當(dāng)∠B=2∠DCA時(shí),求證:四邊形AECD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AD∥BC,M是AD的中點(diǎn),MB=MC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足為O,過D作DE∥AC交BC的延長線于E.
(1)求證:四邊形ACED是平行四邊形;
(2)若AD=4,BC=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案