頂角為36°的等腰三角形稱為黃金三角形,如圖,△ABC為黃金三角形,其頂角∠A=36°,BD為∠ABC的平分線.

(1)試說(shuō)明BC=AD;

(2)試證明;

(3)試說(shuō)明△ABC的底與腰的比等于黃金比.

答案:
解析:

  (1)因?yàn)椤螦=36°,AB=AC

  所以∠ABC=∠C=72°

  而B(niǎo)D平分∠ABC

  所以∠DBC=∠DBA=36°

  所以AD=BD  ∠BDC=72°

  所以BC=BD  所以BC=AD

  (2)因?yàn)椤螩=∠C,∠ABC=∠BDC

  所以△ABC~△BDC

  所以

  (3)由(1)知BC=AD

  又

  所以

  即D為AC的黃金分割點(diǎn).

  所以,即

  所以△ABC的底與腰的比等于黃金比.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、我們知道:直角三角形斜邊上的中線等于斜邊的一半,說(shuō)明斜邊上的中線可把直角三角形分成兩個(gè)等腰三角形(圖①).又比如,頂角為36°的等腰三角形也能分成兩個(gè)等腰三角形(圖②).
(1)試試看,你能把圖③、圖④、圖⑤中的三角形分成兩個(gè)等腰三角形嗎?
(2)△ABC中,有一內(nèi)角為36°,過(guò)某一頂點(diǎn)的直線將△ABC分成兩個(gè)等腰三角形,則滿足上述條件的不同形狀(相似的認(rèn)為是同一形狀)的△ABC最多有5種,除了圖②、圖③中的兩種,還有三種,請(qǐng)你畫(huà)出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,頂角為36°的等腰三角形,其底邊與腰之比等于k,這樣的三角形叫黃金三角形,已知腰長(zhǎng)AB=1,△ABC為第一個(gè)黃金三角形,△BCD為第二個(gè)黃金三角形,△CDE為第三個(gè)黃金三角形,以此類推,第2007個(gè)黃金三角形的周長(zhǎng)為( 。
A、k2006
B、k2007
C、
k2006
2+k
D、k2006(2+k)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知:△ABC與△CDE都是頂角為36°的等腰三角形,BC=CD,AC與BD交于F,且B、C、E三點(diǎn)共線.
(1)求圖中共有多少個(gè)等腰三角形?并寫(xiě)出來(lái);
(2)要使△BCD≌△ACE,則頂角應(yīng)該為多少度?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,頂角為36°的等腰三角形,其底邊與腰之比等于k,這樣的三角形叫做黃金三角形.已知AB=1,△ABC為第一個(gè)黃金三角形,△BCD為第二個(gè)黃金三角形,△CDE為第三個(gè)黃金三角形,以此類推,第2014個(gè)黃金三角形的周長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河北省中考考前模擬測(cè)試數(shù)學(xué)卷(3) 題型:解答題

我們知道:直角三角形斜邊上的中線等于斜邊的一半,說(shuō)明斜邊上的中線可把直角三角形分成兩個(gè)等腰三角形(圖①)。又比如,頂角為36°的等腰三角形也能分成兩個(gè)等腰三角形(圖②)。

1.試試看,你能把圖③、圖④、圖⑤中的三角形分成兩個(gè)等腰三角形嗎

2.△ABC中,有一內(nèi)角為36°,過(guò)某一頂點(diǎn)的直線將△ABC分成兩個(gè)等腰三角形,則滿足上述條件的不同形狀(相似的認(rèn)為是同一形狀)的△ABC最多有5種,除了圖②、圖③中的兩種,還有三種,請(qǐng)你畫(huà)出來(lái)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案