如圖,拋物線與軸交于,0)、,0)兩點,且,與軸交于點,其中是方程的兩個根。(14分)

(1)求拋物線的解析式;

(2)點是線段上的一個動點,過點,交于點,連接,當的面積最大時,求點的坐標;

(3)點在(1)中拋物線上,

為拋物線上一動點,在軸上是

否存在點,使以為頂

點的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點的坐標,

若不存在,請說明理由。

 

 

 

 

 

見解析

解析:

(1)∵,∴。

,.

又∵拋物線過點、,故設拋物線的解析式為,將點的坐標代入,求得

∴拋物線的解析式為!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ4分

(2)設點的坐標為(,0),過點軸于點(如圖(1))。

∵點的坐標為(,0),點的坐標為(6,0),

,!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ4分

MNBC,∴△AMN∽△ABC

,∴,∴。·

 ·

。

∴當時,有最大值4。

此時,點的坐標為(2,0)!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ9分

(3)∵點(4,)在拋物線上,

∴當時,,

∴點的坐標是(4,)。

①  如圖(2),當為平行四邊形的邊時,

(4,),∴E(0,4)

,

如圖(3),當為平行四邊形的對角線時,設

則平行四邊形的對稱中心為(,0)。

的坐標為(,4)。

,4)代入,得

解得 。

,!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ14分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,拋物線軸交于兩點,與軸相交于點.連結AC、BC,B、C兩點的坐標分別為B(1,0)、,且當x=-10和x=8時函數(shù)的值相等.

 

 

1.求a、b、c的值;

2.若點同時從點出發(fā),均以每秒1個單位長度的速度分別沿邊運動,其中一個點到達終點時,另一點也隨之停止運動.連結,將沿翻折,當運動時間為幾秒時,點恰好落在邊上的處?并求點的坐標及四邊形的面積;

3.上下平移該拋物線得到新的拋物線,設新拋物線的頂點為D,對稱軸與x軸的交點為E,若△ODE與△OBC相似,求新拋物線的解析式。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線軸交于A、B兩點,與軸交于C點,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,2),連結BC、AD.

(1)求C點的坐標及拋物線的解析式;

(2)將△BCH繞點B按順時針旋轉90º后再沿軸對折得到△BEF(點C與點E對應),判斷點E是否落在拋物線上,并說明理由;

(3)設過點E的直線交AB邊于點P,交CD邊于點Q. 問是否存在點P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點坐標;若不存在,請說明理由.                                                                                     

       

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆四川省鹽邊縣紅格中學九年級下學期摸底考試數(shù)學試卷(帶解析) 題型:解答題

如圖,拋物線軸交于兩點,與軸交于點.

(1)請求出拋物線頂點的坐標(用含的代數(shù)式表示),兩點的坐標;
(2)經(jīng)探究可知,的面積比不變,試求出這個比值;
(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆仙師中學九年級第一次月考試考試數(shù)學卷 題型:選擇題

如圖,拋物線與軸交于,0)、,0)兩點,且,與軸交于點,其中是方程的兩個根。(14分)

(1)求拋物線的解析式;

(2)點是線段上的一個動點,過點,交于點,連接,當的面積最大時,求點的坐標;

(3)點在(1)中拋物線上,

為拋物線上一動點,在軸上是

否存在點,使以為頂

點的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點的坐標,

若不存在,請說明理由。

 

 

查看答案和解析>>

同步練習冊答案