【題目】某中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測(cè)試中他們的成績(jī)統(tǒng)計(jì)如下表:

跳繩數(shù)/個(gè)

81

85

90

93

95

98

100

人 數(shù)

1

2

8

11

5

將這些數(shù)據(jù)按組距5(個(gè))分組,繪制成如圖的頻數(shù)分布直方圖(不完整).

(1)將表中空缺的數(shù)據(jù)填寫(xiě)完整,并補(bǔ)全頻數(shù)分布直方圖;
(2)這個(gè)班同學(xué)這次跳繩成績(jī)的眾數(shù)是個(gè),中位數(shù)是個(gè);
(3)若跳滿(mǎn)90個(gè)可得滿(mǎn)分,學(xué)校初三年級(jí)共有720人,試估計(jì)該中學(xué)初三年級(jí)還有多少人跳繩不能得滿(mǎn)分.

【答案】
(1)解:根據(jù)直方圖得到95.5﹣100.5小組共有13人,由統(tǒng)計(jì)表知道跳100個(gè)的有5人,

∴跳98個(gè)的有13﹣5=8人,

跳90個(gè)的有40﹣1﹣2﹣8﹣11﹣8﹣5=5人,

故統(tǒng)計(jì)表為:

跳繩數(shù)/個(gè)

81

85

90

93

95

98

100

人 數(shù)

1

2

5

8

11

8

5

直方圖為:


(2)95,95
(3)解:估計(jì)該中學(xué)初三年級(jí)不能得滿(mǎn)分的有720× =54人

【解析】解:(2)觀(guān)察統(tǒng)計(jì)表知:眾數(shù)為95個(gè),中位數(shù)為95個(gè);

(2)眾數(shù) 是出現(xiàn)次數(shù)最多的數(shù)據(jù),中位數(shù)須將數(shù)據(jù)大小依次排列,處于最中間的一個(gè)數(shù)或最中間的兩個(gè)數(shù)的平均數(shù);(3)利用樣本估計(jì)總體的特性,可以估算總體約有720× 0.075=54人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:小明熱愛(ài)數(shù)學(xué),在課外書(shū)上看到了一個(gè)有趣的定理﹣﹣“中線(xiàn)長(zhǎng)定理”:三角形兩邊的平方和等于第三邊的一半與第三邊上的中線(xiàn)的平方和的兩倍.如圖1,在△ABC中,點(diǎn)D為BC的中點(diǎn),根據(jù)“中線(xiàn)長(zhǎng)定理”,可得:
AB2+AC2=2AD2+2BD2 . 小明嘗試對(duì)它進(jìn)行證明,部分過(guò)程如下:
解:過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,如圖2,在Rt△ABE中,AB2=AE2+BE2 ,
同理可得:AC2=AE2+CE2 , AD2=AE2+DE2
為證明的方便,不妨設(shè)BD=CD=x,DE=y,
∴AB2+AC2=AE2+BE2+AE2+CE2=…
(1)請(qǐng)你完成小明剩余的證明過(guò)程;
理解運(yùn)用:

(2)①在△ABC中,點(diǎn)D為BC的中點(diǎn),AB=6,AC=4,BC=8,則AD=
②如圖3,⊙O的半徑為6,點(diǎn)A在圓內(nèi),且OA=2 ,點(diǎn)B和點(diǎn)C在⊙O上,且∠BAC=90°,點(diǎn)E、F分別為AO、BC的中點(diǎn),則EF的長(zhǎng)為
拓展延伸:

(3)小明解決上述問(wèn)題后,聯(lián)想到《能力訓(xùn)練》上的題目:如圖4,已知⊙O的半徑為5 ,以A(﹣3,4)為直角頂點(diǎn)的△ABC的另兩個(gè)頂點(diǎn)B,C都在⊙O上,D為BC的中點(diǎn),求AD長(zhǎng)的最大值.
請(qǐng)你利用上面的方法和結(jié)論,求出AD長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線(xiàn)分別交于點(diǎn)的角平分線(xiàn)交于點(diǎn)交于點(diǎn)

1)求證:

2)如圖2,連接上一動(dòng)點(diǎn),平分的大小是否發(fā)生變化?若不變,求出其值;若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩地相距50km,甲于某日騎自行車(chē)從A地出發(fā)駛往B地,乙也于同日下午騎摩托車(chē)從A地出發(fā)駛往B地,在這個(gè)變化過(guò)程中,甲和乙所行駛的路程用變量skm)表示,甲所用的時(shí)間用變量t(時(shí))表示,圖中折線(xiàn)OPQ和線(xiàn)段MN分別表示甲和乙所行駛的路程s與時(shí)間t的變化關(guān)系,請(qǐng)根據(jù)圖象回答:

1)直接寫(xiě)出:甲出發(fā)后______小時(shí),乙才開(kāi)始出發(fā);

2)請(qǐng)分別求出甲出發(fā)1小時(shí)后的速度和乙的行駛速度?

3)求乙行駛幾小時(shí)后追上甲,此時(shí)兩人距B地還有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠(chǎng)都具備加工能力,公司派出相關(guān)人員分別到這兩間工廠(chǎng)了解情況,獲得如下信息:
信息一:甲工廠(chǎng)單獨(dú)加工完成這批產(chǎn)品比乙工廠(chǎng)單獨(dú)加工完成這批產(chǎn)品多用10天;
信息二:乙工廠(chǎng)每天加工的數(shù)量是甲工廠(chǎng)每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個(gè)工廠(chǎng)每天分別能加工多少件新產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】MON=90°,點(diǎn)A,B分別在OM、ON上運(yùn)動(dòng)(不與點(diǎn)O重合).

1)如圖①,AE、BE分別是∠BAO和∠ABO的平分線(xiàn),隨著點(diǎn)A、點(diǎn)B的運(yùn)動(dòng),∠AEB=  °

2)如圖②,若BC是∠ABN的平分線(xiàn),BC的反向延長(zhǎng)線(xiàn)與∠OAB的平分線(xiàn)交于點(diǎn)D

①若∠BAO=60°,則∠D=    °

②隨著點(diǎn)A,B的運(yùn)動(dòng),∠D的大小會(huì)變嗎?如果不會(huì),求∠D的度數(shù);如果會(huì),請(qǐng)說(shuō)明理由.

3)如圖③,延長(zhǎng)MOQ,延長(zhǎng)BAG,已知∠BAO,∠OAG的平分線(xiàn)與∠BOQ的平分線(xiàn)及其延長(zhǎng)線(xiàn)相交于點(diǎn)E、F,在中,如果有一個(gè)角是另一個(gè)角的3倍,求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AC=BD,E、FG、H分別是ABBC、CD、DA的中點(diǎn),且EG、FH交于點(diǎn)O.若AC=4,則EG2+FH2=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過(guò)點(diǎn)C的切線(xiàn)互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線(xiàn)EC交AB的延長(zhǎng)線(xiàn)于點(diǎn)P,連接AC,BC,PC=2PB.

(1)探究線(xiàn)段PB,AB之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若AD=3,求AB長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案