如圖,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC于F,連接EF.
(1)證明:EF=CF;
(2)當(dāng)tan∠ADE=時(shí),求EF的長(zhǎng).

【答案】分析:(1)過(guò)D作DG⊥BC于G,由已知可得四邊形ABGD為正方形,然后利用正方形的性質(zhì)和已知條件證明△ADE≌△GDC,接著利用全等三角形的性質(zhì)證明△EDF≌△CDF,
(2)由tan∠ADE=根據(jù)已知條件可以求出AE=GC=2.設(shè)EF=x,則BF=8-CF=8-x,BE=4.在Rt△BEF中根據(jù)勾股定理即可求出x,也就求出了EF.
解答:(1)證明:過(guò)D作DG⊥BC于G.
由已知可得四邊形ABGD為正方形,
∵DE⊥DC.
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC.
又∵∠A=∠DGC且AD=GD,
∴△ADE≌△GDC,
∴DE=DC且AE=GC.
在△EDF和△CDF中
,
∴△EDF≌△CDF,
∴EF=CF;

(2)解:∵tan∠ADE==,
∴AE=GC=2.
∴BC=8,
BE=4,設(shè)CF=x,則BF=8-CF=8-x,
在Rt△BEF中,由勾股定理得:x2=(8-x)2+42
解得x=5,
即EF=5.
點(diǎn)評(píng):本題考查梯形、正方形、直角三角形的相關(guān)知識(shí).解決此類題要懂得用梯形的常用輔助線,把梯形分割為矩形和直角三角形,從而由矩形和直角三角形的性質(zhì)來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)E是AB邊上一點(diǎn),AE=BC,DE⊥EC,取DC的中點(diǎn)F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長(zhǎng)FE交BC于點(diǎn)G,點(diǎn)G恰好是BC的中點(diǎn),若AB=6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點(diǎn)E,連接CE,將△BCE繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫(huà)出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案