【題目】已知點(diǎn)P位于第一象限,到x軸的距離為2,到y(tǒng)軸的距離為5,則點(diǎn)P的坐標(biāo)為( )
A.(2,5)B.(5,2)C.(2,5)或(-2,5)D.(5,2)或(-5,2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明用的練習(xí)本,一般在甲、乙兩家文具店購買,已知兩家文具店的標(biāo)價(jià)都是每本1元,但甲文具店的優(yōu)惠條件是一次購買10本以上,從第11本起按標(biāo)價(jià)的70%賣;乙文具店的優(yōu)惠條件是全部按八五折優(yōu)惠.
(1)若小明打算買30本,到哪家店購買省錢?
(2)小明現(xiàn)有38元錢,最多可買多少本練習(xí)本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣2x2+4x﹣3,如果y隨x的增大而減小,那么x的取值范圍是( )
A.x≥1
B.x≥0
C.x≥﹣1
D.x≥﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D、F分別在AC、BC邊上,設(shè)CD的長(zhǎng)度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:
①∠EBG=45°; ②△DEF∽△ABG;
③S△ABG=S△FGH; ④AG+DF=FG.
其中正確的是_____.(填寫正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知八邊形ABCDEFGH中4個(gè)正方形的面積分別為25,144,48,121個(gè)平方單位,PR=13(單位),則該八邊形的面積= 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)如圖①所示,P是等邊△ABC內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAP繞B點(diǎn)順時(shí)針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;
(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAP繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△BCQ,連接PQ.當(dāng)PA、PB、PC滿足什么條件時(shí),∠PQC=90°?請(qǐng)說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):
()如圖①,已知線段,畫出平面內(nèi)滿足的所有點(diǎn)組成的圖形.
問題探究:
()如圖②,菱形的對(duì)角線與交于點(diǎn),點(diǎn)、分別是和上的動(dòng)點(diǎn),且,點(diǎn)為的中點(diǎn),已知, ,連接、,求面積的最大值.
問題解決:
()如圖③,等腰直角三角形的斜邊,點(diǎn)、分別是直角邊和上的動(dòng)點(diǎn),以 為斜邊在的左下側(cè)(包括左側(cè)和下側(cè))作等腰直角三角形,連接,則線段的長(zhǎng)度是否存在最小值,若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把拋物線y=ax+bx+c的圖象先向右平移3個(gè)單位,再向下平移2個(gè)單位,所得的圖象的解析式是y=x-3x+5,則a+b+c=__________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com