【題目】(本題6分)某市對(duì)一大型超市銷售的甲、乙、丙3種大米進(jìn)行質(zhì)量檢測(cè).共抽查大米200袋,質(zhì)量評(píng)定分為A、B兩個(gè)等級(jí)(A級(jí)優(yōu)于B級(jí)),相應(yīng)數(shù)據(jù)的統(tǒng)計(jì)圖如下:
根據(jù)所給信息,解決下列問題:
(1)a=_______,b=_______.
(2)已知該超市現(xiàn)有乙種大米750袋,根據(jù)檢測(cè)結(jié)果,請(qǐng)你估計(jì)該超市乙種大米中有多少袋B級(jí)大米?
(3)對(duì)于該超市的甲種和丙種大米,你會(huì)選擇購(gòu)買哪一種?請(qǐng)簡(jiǎn)述理由。
【答案】(1)a=55;b=5 ;(2)100 ;(3)選丙
【解析】試題分析:(1)根據(jù)甲的圓心角度數(shù)是108°,求出所占的百分比,再根據(jù)總袋數(shù)求出甲種大米的袋數(shù),即可求出a、b的值;
(2)根據(jù)題意得先求出該超市乙種大米中B級(jí)大米所占的百分比,再乘以乙種大米的總袋數(shù)即可;
(3)分別求出超市的甲種大米A等級(jí)大米所占的百分比和丙種大米A等級(jí)大米所占的百分比,即可得出答案.
試題解析:(1)∵甲的圓心角度數(shù)是108°,所占的百分比是×100=30%,
∴甲種大米的袋數(shù)是:200×30%=60(袋),
∴a=60-5=55(袋),
∴b=200-60-65-10-60=5(袋);
故答案為:55,5;
(2)根據(jù)題意得:
750×=100(袋),
答:該超市乙種大米中有100袋B級(jí)大米;
(3)∵超市的甲種大米A等級(jí)大米所占的百分比是×100%=91.7%,
丙種大米A等級(jí)大米所占的百分比是
∴應(yīng)選擇購(gòu)買丙種大米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏家對(duì)面新建了一幢圖書大廈,小敏在自家窗口測(cè)得大廈頂部的仰角為45°,大廈底部的仰角為30°,如圖所示,量得兩幢樓之間的距離為20 米.
(1)求出大廈的高度BD;
(2)求出小敏家的高度AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形周長(zhǎng)為8,底邊BC長(zhǎng)為,腰AB長(zhǎng)為,
(1)寫出關(guān)于的函數(shù)關(guān)系式__________________;
(2)寫出的取值范圍_____________;寫出的取值范圍_____________.
(3)畫出這個(gè)函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點(diǎn),CD=CB,延長(zhǎng)CD交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的周長(zhǎng)為40米,甲、乙兩人分別從A、B同時(shí)出發(fā),沿正方形的邊行走,甲按逆時(shí)針方向每分鐘行55米,乙按順時(shí)針方向每分鐘行30米.
(1)出發(fā)后 分鐘時(shí),甲乙兩人第一次在正方形的頂點(diǎn)處相遇;
(2)如果用記號(hào)(a,b)表示兩人行了a分鐘,并相遇過b次,那么當(dāng)兩人出發(fā)后第一次處在正方形的兩個(gè)相對(duì)頂點(diǎn)位置時(shí),對(duì)應(yīng)的記號(hào)應(yīng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索新知:
如圖1,射線OC在的內(nèi)部,圖中共有3個(gè)角:,和,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線OC是的“巧分線”.
(1)一個(gè)角的平分線______這個(gè)角的“巧分線”;填“是”或“不是”
(2)如圖2,若,且射線PQ是的“巧分線”,則______;用含的代數(shù)式表示出所有可能的結(jié)果
深入研究:
如圖2,若,且射線PQ繞點(diǎn)P從PN位置開始,以每秒的速度逆時(shí)針旋轉(zhuǎn),當(dāng)PQ與PN成時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)的時(shí)間為t秒.
(3)當(dāng)t為何值時(shí),射線PM是的“巧分線”;
(4)若射線PM同時(shí)繞點(diǎn)P以每秒的速度逆時(shí)針旋轉(zhuǎn),并與PQ同時(shí)停止,請(qǐng)直接寫出當(dāng)射線PQ是的“巧分線”時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xoy中,點(diǎn)A、B的坐標(biāo)分別是A(-1,0),B(3,0),將線段AB向上平移2個(gè)單位,再向右平移1個(gè)單位,得到線段DC,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是D、C,連接AD、BC.
(1)直接寫出點(diǎn)C,D的坐標(biāo);
(2)求四邊形ABCD的面積;
(3)點(diǎn)P為線段BC上任意一點(diǎn)(與點(diǎn)B、C不重合),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x1、x2是一元二次方程2x2﹣7x+5=0的兩根,利用一元二次方程根與系數(shù)的關(guān)系,求下列各式的值.
(1)x12x2+x1x22; (2)(x1﹣x2)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平行四邊形ABCD中,AE⊥BC,垂足為E,CE=CD,點(diǎn)F為CE的中點(diǎn),點(diǎn)G為CD上的一點(diǎn),連接DF,EG,AG,∠1=∠2.
(1)求證:G為CD的中點(diǎn).
(2) 若CF=2,AE=3,求BE的長(zhǎng);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com