4.已知等邊△ABC的邊長為4cm,點P,Q分別從B,C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;
點Q沿CA,AB向終點B運動,速度為2cm/s,設(shè)它們運動的時間為x(s),
(1)如圖(1),當x為何值時,PQ∥AB;
(2)如圖(2),若PQ⊥AC,求x;
(3)如圖(3),當點Q在AB上運動時,PQ與△ABC的高AD交于點O,OQ與OP是否總是相等?請說明理由.

分析 (1)首先得出△PQC為等邊三角形,進而表示出PC=4-x,CQ=2x,由4-x=2x,求出答案;
(2)根據(jù)題意得出CQ=$\frac{1}{2}$PC,即2x=$\frac{1}{2}$(4-x),求出即可;
(3)根據(jù)題意得出QH=DP,進而判斷出△OQH≌△OPD(AAS),即可得出答案.

解答 解:(1)∵∠C=60°,
∴當PC=CQ時,△PQC為等邊三角形,
于是∠QPC=60°=∠B,
從而PQ∥AB,
∵PC=4-x,CQ=2x,
由4-x=2x,
解得:x=$\frac{4}{3}$,
∴當x=$\frac{4}{3}$時,PQ∥AB;

(2)∵PQ⊥AC,∠C=60°,
∴∠QPC=30°,
∴CQ=$\frac{1}{2}$PC,
即2x=$\frac{1}{2}$(4-x),
解得:x=$\frac{4}{5}$;

(3)OQ=PO,理由如下:
作QH⊥AD于H,如圖(3),
∵AD⊥BC,
∴∠QAH=30°,BD=$\frac{1}{2}$BC=2,
∴QH=$\frac{1}{2}$AQ=$\frac{1}{2}$(2x-4)=x-2,
∵DP=BP-BD=x-2,
∴QH=DP,
在△OQH和△OPD中,
$\left\{\begin{array}{l}{∠QOH=∠POD}\\{∠QHO=∠PDO}\\{QH=PD}\end{array}\right.$,
∴△OQH≌△OPD(AAS),
∴OQ=OP.

點評 本題考查了全等三角形的判定與性質(zhì):全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.在應用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當輔助線構(gòu)造三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:選擇題

14.下列各點中,在第二象限的點是( 。
A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

15.下列計算正確的是( 。
A.3$\sqrt{2}$=$\sqrt{6}$B.$\sqrt{6}$×$\sqrt{8}$=4$\sqrt{6}$C.$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$D.$\sqrt{\frac{7}{6}}$÷$\sqrt{\frac{5}{6}}$=$\frac{\sqrt{7}}{5}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.在甲、乙兩城市之間有動車組高速列車,也有普通快車,如圖所示,OA是一列動車組列車離開甲城的路程s(km)與運行時間t(h)的函數(shù)圖象,BC是一列從乙城開往甲城的普通快車距甲城的路程s(km)與運動時間t(h)的函數(shù)圖象,請根據(jù)圖中信息,解答下列問題:
(1)點B的橫坐標0.5的實際意義是普通快車比動車組列車晚出發(fā)0.5小時,點B的縱坐標300的實際意義是甲、乙兩城市相距300km;
(2)求OA與BC所在直線的函數(shù)表達式;
(3)求動車組列車出發(fā)后多長時間與普通列車相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.化簡:4a+3b+3(a-b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

9.將一個底面直徑是10厘米、高為40厘米的圓柱鍛壓成底面直徑為16厘米的圓柱,則鍛壓后圓柱的高為15.625厘米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.如圖是由邊長為1cm的若干個正方形疊加行成的圖形,其中第一個圖形由1個正方形組成,周長為4cm,第二個圖形由4個正方形組成,周長為10cm.第三個圖形由9個正方形組成,周長為16cm,依次規(guī)律…
(1)第四個圖形有16個正方形組成,周長為22cm.
(2)第n個圖形有n2個正方形組成,周長為6n-2cm.
(3)若某圖形的周長為58cm,計算該圖形由多少個正方形疊加形成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

13.如圖,在△ABC中,AD⊥BC且BD>CD,DF⊥AB,△CDE和△ADB都是等腰直角三角形,給出下列結(jié)論,正確的是①②
①△ADC≌△BDE;②△ADF≌△BDF;③△CDE≌△AFD;④△ACE≌ABE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.若a<b,化簡$\sqrt{{a}^{2}^{5}}$的結(jié)果不可能是( 。
A.ab2$\sqrt$B.-ab2$\sqrt{-b}$C.-ab2$\sqrt$D.-ab$\sqrt{-ab}$

查看答案和解析>>

同步練習冊答案