【題目】如圖,在等腰中,.點(diǎn)從點(diǎn)出發(fā)沿射線方向運(yùn)動(dòng),同時(shí)點(diǎn)出發(fā),以相同的速度沿射線方向運(yùn)動(dòng),連,交直線于點(diǎn)

當(dāng)點(diǎn)運(yùn)動(dòng)到中點(diǎn)時(shí),求的長(zhǎng).

求證:.

過(guò)點(diǎn),交直線,請(qǐng)?zhí)骄?/span>之間的數(shù)量關(guān)系,并直接寫出結(jié)論.

【答案】(1)(2)證明見(jiàn)解析;(3)當(dāng)點(diǎn)上時(shí),;當(dāng)點(diǎn)的延長(zhǎng)線上時(shí)

【解析】

1)根據(jù)題意得出CF,然后利用勾股定理即可得出DF;

2)首先作,利用平行的性質(zhì)構(gòu)造,即可得證;

3)分情況探究:當(dāng)點(diǎn)上和的延長(zhǎng)線上時(shí),利用三線合一的性質(zhì)進(jìn)行等量轉(zhuǎn)換即可.

1)由題意,得AD=CF==2

AF=AC+CF=4+2=6

(2),如圖所示:

∠BKD=∠BCA,∠KDG=∠CFG

∴∠DKG=FCG

DAB中點(diǎn),DKAC

DK=CF

ASA),

(3)當(dāng)點(diǎn)上時(shí),如圖所示,

∵等腰

∴∠B=45°

BH=HK

KG=CG

;

當(dāng)點(diǎn)的延長(zhǎng)線上時(shí),如圖所示:

∵等腰

∴∠B=45°

BH=GH

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在中,,分別是,的中點(diǎn),是對(duì)角線,延長(zhǎng)線于.若四邊形是菱形,則四邊形是(

A. 平行四邊形 B. 矩形

C. 菱形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,5),B(-2,1),C(-1,3).

1)畫出ABC關(guān)于x軸的對(duì)稱圖形A1B1C1

2)畫出A1B1C1沿x軸向右平移4個(gè)單位長(zhǎng)度后得到的A2B2C2;

3)如果AC上有一點(diǎn)Ma,b)經(jīng)過(guò)上述兩次變換,那么對(duì)應(yīng)A2C2上的點(diǎn)M2的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是三角形內(nèi)一點(diǎn),連接AD,BDCD,∠BDC=90°,∠DBC=45°.

(1)求證:∠BAD=∠CAD;

(2)求∠ADB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的一條弦,ODAB,垂足為點(diǎn)C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.

(1)若∠AOD=52°,求∠DEB的度數(shù);

(2)若CD=2,AB=8,求半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組在本校九年級(jí)學(xué)生中以“你最喜歡的項(xiàng)體育運(yùn)動(dòng)"為主體進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成下表和下圖.

項(xiàng)目

籃球

乒乓球

羽毛球

跳繩

其他

人數(shù)

12

10

5

8

請(qǐng)根據(jù)圖表中的信息完成下列各題:

1)本次共調(diào)查學(xué)生______名;

2=______

3)在扇形圖中,“跳繩”對(duì)應(yīng)的扇形圓是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)直徑為1m的圓形鐵皮,要從中剪出一個(gè)最大的圓心角為90°的扇形ABC,如圖所示.

(1)求被剪掉陰影部分的面積:

(2)用所留的扇形鐵皮圍成一個(gè)圓錐,該圓錐的底面圓的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,D、E分別是半徑OA、OB的中點(diǎn),C上一點(diǎn),CD=CE.

(1)求證:=

(2)若∠AOB=120°,CD=,求半徑OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案