證明:(1)如圖1,延長AO至E,使AE交CB于E,
∵△ADC、△BDO為等腰直角三角形,
∴AD=CD,OD=BD,∠ADC=∠ODB=90°,
在△ADO和△CDB中,
∵
,
∴△ADO≌△CDB(SAS),
∴∠DAO=∠DCB,AO=BC,
又∵∠DBC+∠DCB=90°,
∴在△AEB中,∠BAE+∠ABC=∠AEB=90°,
∴AO⊥BC;
(2)如圖2,AO與BC相交于點F,OD與BC相交于點E,
同(1),可證得△ADO≌△CDB,
∴AO=BC,∠AOD=∠CBD,
又∵∠CBD+∠DEB=90°,∠DEB=∠FEO,
∴△EFO中,∠FOE+∠FEO=90°,
∴∠EFO=180°-90°=90°
∴AO⊥BC.
分析:(1)如圖1,根據(jù)題意,△ADC、△BDO為等腰直角三角形,易證△ADO≌△CDB,可得∠DAO=∠DCB,AO=BC,又由∠DBC+∠DCB=90°,所以,在△AEB中,∠BAE+∠ABC=∠AEB=90°;
(2)如圖2,令AO與BC相交于點F,OD與BC相交于點E,同理,可證得△ADO≌△CDB,可得AO=BC,∠AOD=∠CBD,又由∠CBD+∠DEB=90°,∠DEB=∠FEO,所以,△EFO中,∠FOE+∠FEO=90°,即可證得.
點評:本題主要考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)及旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)的性質(zhì):①對應點到旋轉(zhuǎn)中心的距離相等;②對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;③旋轉(zhuǎn)前、后的圖形全等.