【題目】作圖題:
(1)如圖,在平面內有不共線的3個點A,B,C.
(a)作直線AB,射線AC,線段BC;
(b)延長BC到點D,使CD=BC,連接AD;
(c)作線段AB的中點E,連接CE;
(d)測量線段CE和AD的長度,直接寫出二者之間的數量關系_______.
(2) 有5個大小一樣的正方形制成如圖所示的拼接圖形(陰影部分),請你在圖中的拼接圖形上再接一個正方形,使新拼接成的圖形經過折疊后能成為一個封閉的正方體盒子.
注意:只需添加一個符合要求的正方形,并用陰影表示.
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+5的圖象過A(﹣1,0),B(5,0)兩點,與y軸交于點C,作直線BC,動點P從點C出發(fā),以每秒個單位長度的速度沿CB向點B運動,運動時間為t秒,當點P與點B重合時停止運動.
(1)求拋物線的表達式;
(2)如圖2,當t=1時,若點Q是X軸上的一個動點,如果以Q,P,B為頂點的三角形與△ABC相似,求出Q點的坐標;
(3)如圖3,過點P向x軸作垂線分別交x軸,拋物線于E、F兩點.
①求PF的長度關于t的函數表達式,并求出PF的長度的最大值;
②連接BF,將△PBF沿BF折疊得到△P′BF,當t為何值時,四邊形PFP′B是菱形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有下列四種說法:①兩個菱形相似;②兩個矩形相似;③兩個平行四邊形相似;④兩個正方形相似其中說法正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是 , 證明你的結論.
(2)如圖2,請連接四邊形ABCD的對角線AC與BD,當AC與BD滿足條件時,四邊形EFGH是矩形;證明你的結論.
(3)你學過的哪種特殊四邊形的中點四邊形是矩形?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com