(1)如圖1,在矩形紙片ABCD中,AB=2,∠ADB=30°,現(xiàn)將矩形紙片沿對(duì)角線BD折疊,(使△CBD和△EBD落在同一平面內(nèi))則AE兩點(diǎn)間的距離為______.
(2)求x的值,32x+1+9x+1=36.
(3)如圖2,廠A和工廠B被一條河隔開,它們到河的距離都是2km,兩個(gè)廠的水平距離都是3km,河寬1km,現(xiàn)在要架一座垂直于河岸的橋,使工廠A到工廠B的距離最短.(河的兩岸是平行的)
①請(qǐng)畫出架橋的位置.(不寫畫法)
②求從工廠A經(jīng)過(guò)橋到工廠B的最短路程.

解:(1)由矩形的性質(zhì)可知△ABD≌△CDB,由折疊的性質(zhì)可知△CDB≌△EDB,
∴△ABD≌△EDB,
根據(jù)全等三角形對(duì)應(yīng)邊上的高相等,可知AE∥BD,
∵AD∥BC,△CDB≌△EDB,
∴∠EBD=∠CBD=∠ADB=30°,
∴∠ABE=90°-∠EBD-∠CBD=30°,
∠AEB=∠EBD=30°,即∠ABE=∠AEB,
∴AE=AB=2;
故答案為:2;

(2)由32x×3+9x×9=36,
得32x×3+32x×9=36,
有32x(3+9)=36,
∴32x=3,
2x=1,
解得:x=,

(3)①如圖所示,AA′=1km,則MN為架橋的位置.
②過(guò)點(diǎn)B作BE⊥AA′交其延長(zhǎng)線于點(diǎn)E.
則A′E=4,BE=3,
A′B=
=
=5,
則從A到B的最短路程是:
AM+MN+BN=A′B+MN,
=5+1,
=6(km),
答:從工廠A經(jīng)過(guò)橋到工廠B的最短路程是6km.
分析:(1)由矩形的性質(zhì),折疊的性質(zhì)可證△ABD≌△EDB,根據(jù)全等三角形對(duì)應(yīng)邊上的高相等,可證四邊形ABDE為梯形,再根據(jù)角的關(guān)系證明△ABE為等腰三角形即可.
(2)首先把算式變形為32x×3+32x×9=36,再提取公因式32x,可得32x(3+9)=36,進(jìn)而得到32x=3,即2x=1,再解方程即可;
(3)①根據(jù)兩點(diǎn)間直線距離最短,使AMNA′為平行四邊形即可,即AA′垂直河岸且等于河寬,接連A′B,
②根據(jù)已知數(shù)據(jù)由勾股定理求出A′B的長(zhǎng)即可.
點(diǎn)評(píng):此題主要考查了翻折變換的性質(zhì)以及平行四邊形的性質(zhì)和冪的乘方與積的乘方等知識(shí),根據(jù)已知得出A′B是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖1,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿N→P→Q→M方向運(yùn)動(dòng)至點(diǎn)M處停止.
設(shè)點(diǎn)R運(yùn)動(dòng)的路程為x,△MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則
矩形MNPQ的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)P從A點(diǎn)出發(fā),沿A→B→C→D路線運(yùn)動(dòng),到D點(diǎn)停止;點(diǎn)Q從D點(diǎn)出發(fā),沿D→C→B→A運(yùn)動(dòng),到A點(diǎn)停止.若點(diǎn)P、點(diǎn)Q同時(shí)出發(fā),點(diǎn)P的速度為每秒1cm,點(diǎn)Q的速度為每秒2cm,a秒時(shí)點(diǎn)P、點(diǎn)Q同時(shí)改變速度,點(diǎn)P的速度變?yōu)槊棵隻(cm),點(diǎn)Q的速度變?yōu)槊棵隿(cm).如圖2是點(diǎn)P出發(fā)x秒后△APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;圖3是點(diǎn)Q出發(fā)x秒后△AQD的面積S2(cm2)與x(秒)的函數(shù)關(guān)系圖象.根據(jù)圖象:
(1)求a、b、c的值;
(2)設(shè)點(diǎn)P離開點(diǎn)A的路程為y1(cm),點(diǎn)Q到點(diǎn)A還需要走的路程為y2(cm),請(qǐng)分別寫出改變速度后y1、y2與出發(fā)后的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)關(guān)系式,并求出P與Q相遇時(shí)x的值.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖1,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿N=>P=>Q=>M方向運(yùn)動(dòng)至點(diǎn)M處停止.設(shè)點(diǎn)R運(yùn)動(dòng)的路程為x,△MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則當(dāng)x=9時(shí),點(diǎn)R應(yīng)運(yùn)動(dòng)到( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•溧水縣二模)如圖1,在矩形ABCD中,AB=8,AD=6,點(diǎn)P、Q分別是AB邊和CD邊上的動(dòng)點(diǎn),點(diǎn)P從點(diǎn)A向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C向點(diǎn)D運(yùn)動(dòng),且保持AP=CQ.設(shè)AP=x.
(1)當(dāng)PQ∥AD時(shí),x的值等于
4
4
;
(2)如圖2,線段PQ的垂直平分線EF與BC邊相交于點(diǎn)E,連接EP、EQ,設(shè)BE=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)在問(wèn)題(2)中,設(shè)△EPQ的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并求當(dāng)x取何值時(shí),S的值最小,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河北一模)如圖1,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC,CD運(yùn)動(dòng)至點(diǎn)D停止,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示,則△ABC的面積是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案