已知:⊙O1與⊙O2的半徑分別為2cm和3cm,圓心距O1O2=6cm,那么這兩個圓的位置關系是( )
A.外離
B.外切
C.內(nèi)切
D.相交
【答案】分析:本題直接告訴了兩圓的半徑及圓心距,根據(jù)數(shù)量關系與兩圓位置關系的對應情況便可直接得出答案.
解答:解:∵⊙O1與⊙O2的半徑分別為2cm和3cm,圓心距O1O2=6cm,
3+2=5<6,
∴根據(jù)圓心距與半徑之間的數(shù)量關系可知兩圓的位置關系是外離.故選A.
點評:本題考查了由數(shù)量關系來判斷兩圓位置關系的方法.設兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,已知:⊙O1與⊙O2是等圓,它們相交于A、B兩點,O2在⊙O1上,AC是⊙O2的直徑,直線CB交⊙O1于D,E為AB延長線上一點,連接DE.
(1)請你連接AD,證明:AD是⊙O1的直徑;
(2)若∠E=60°,求證:DE是⊙O1的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:⊙O1與⊙O2相交于A、B兩點,⊙O1的切線AC交⊙O2于點C.直線EF過點B交⊙O1于點E,交⊙O2于點F.精英家教網(wǎng)
(1)若直線EF交弦AC于點K時(如圖1).求證:AE∥CF;
(2)若直線EF交弦AC的延長線于點時(如圖2).求證:DA•DF=DC•DE;
(3)若直線EF交弦AC的反向延長線于點(在圖3自作),試判斷(1)、(2)中的結(jié)論是否成立并證明你的正確判斷.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:⊙O1與⊙O2相交于點A、B,AC切⊙O2于點A,交⊙O1于點C.直線EF過點B,交⊙O1于點E,交⊙O2于點F.
(1)設直線EF交線段AC于點D(如圖1).
①若ED=12,DB=25,BF=11,求DA和DC的長;
②求證:AD•DE=CD•DF;
(2)當直線EF繞點B旋轉(zhuǎn)交線段AC的延長線于點D時(如圖2),試問AD•DE=CD•DF是否仍然成立?證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•青島)已知,⊙O1與⊙O2的半徑分別是4和6,O1O2=2,則⊙O1與⊙O2的位置關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知圓O1與⊙O2外切,它們的圓心距為16cm,⊙O1的半徑是12cm,則⊙O2的半徑是
4
4
cm.

查看答案和解析>>

同步練習冊答案