精英家教網(wǎng)如圖,四邊形ABCD是正方形,曲線DA1B1C1D1…叫做“正方形的漸開(kāi)線”,其中曲線DA1、A1B1、B1C1、C1D1、…的圓心依次按A、B、C、D循環(huán),它們依次連接.取AB=1,則曲線DA1B1…C2D2的長(zhǎng)是
 
.(結(jié)果保留π)
分析:每一條漸開(kāi)線都是一段弧,圓心角都等于90°,半徑分別為1,2,3,4,5,6,7,8,再計(jì)算弧長(zhǎng).
解答:解:曲線DA1B1…C2D2的長(zhǎng)=
90×π×1
180
+
90×π×2
180
+…+
90×π×8
180
=
90π
180
(1+2+…+8)=
90π
180
×36=18π.
故答案為:18π.
點(diǎn)評(píng):考查了弧長(zhǎng)的計(jì)算.弧長(zhǎng)的計(jì)算公式:l=
nπr
180
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案