(2001•湖州)正方形的對角線與邊長的比是( )
A.2:1
B.:1
C.1:2
D.1:
【答案】分析:根據(jù)正方形的性質(zhì)可求得對角線與其兩邊長的夾角的度數(shù)再根據(jù)三角函數(shù)即可求得對角線與邊長的比.
解答:解:正方形的兩邊以及對角線正好構成等腰直角三角形,三角形的銳角是45度,因而邊長與對角線的比是sin45°=,則對角線與邊長的比是::1.
故選B
點評:此題主要考查學生對正方形的性質(zhì)的理解及運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:解答題

(2001•湖州)己知如圖,正△ABC的邊長為2,B,C在x軸的正半軸上,A在第一象限,直線經(jīng)過A點,以BC為直徑的⊙M交AB于E.
(1)求A點的坐標;
(2)求證:OE與⊙M相切;
(3)試各寫出一個頂點在⊙M內(nèi)、⊙M上、⊙M外,且經(jīng)過B、C兩點的拋物線的解析式.(只需寫出解析式,不需書寫求解過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《三角形》(04)(解析版) 題型:解答題

(2001•湖州)己知如圖,正△ABC的邊長為2,B,C在x軸的正半軸上,A在第一象限,直線經(jīng)過A點,以BC為直徑的⊙M交AB于E.
(1)求A點的坐標;
(2)求證:OE與⊙M相切;
(3)試各寫出一個頂點在⊙M內(nèi)、⊙M上、⊙M外,且經(jīng)過B、C兩點的拋物線的解析式.(只需寫出解析式,不需書寫求解過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2001•湖州)己知如圖,正△ABC的邊長為2,B,C在x軸的正半軸上,A在第一象限,直線經(jīng)過A點,以BC為直徑的⊙M交AB于E.
(1)求A點的坐標;
(2)求證:OE與⊙M相切;
(3)試各寫出一個頂點在⊙M內(nèi)、⊙M上、⊙M外,且經(jīng)過B、C兩點的拋物線的解析式.(只需寫出解析式,不需書寫求解過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2001年浙江省湖州市中考數(shù)學試卷(解析版) 題型:解答題

(2001•湖州)己知如圖,正△ABC的邊長為2,B,C在x軸的正半軸上,A在第一象限,直線經(jīng)過A點,以BC為直徑的⊙M交AB于E.
(1)求A點的坐標;
(2)求證:OE與⊙M相切;
(3)試各寫出一個頂點在⊙M內(nèi)、⊙M上、⊙M外,且經(jīng)過B、C兩點的拋物線的解析式.(只需寫出解析式,不需書寫求解過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2001•湖州)已知如圖,D是邊長為4的正△ABC的邊BC上一點,ED∥AC交AB于E,DF⊥AC交AC于F,設DF=x.
(1)求△EDF的面積y與x的函數(shù)關系式和自變量x的取值范圍.
(2)當x為何值時,△EDF的面積最大,最大面積是多少?
(3)若△DCF與由E、F、D三點組成的三角形相似,求BD的長.

查看答案和解析>>

同步練習冊答案