12、如圖,在矩形ABCD中,AB=3,AD=5,點P在線段BC上運動,現(xiàn)將紙片折疊,使點A與點P重合,得折痕EF(點E、F為折痕與矩形邊的交點),設(shè)BP=x,當點E落在AB上,點F落在AD上時,x的取值范圍是(  )
分析:此題需要運用極端原理求解;
①BP最小時,F(xiàn)、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;
②BP最大時,E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=3,即BP的最大值為3;
根據(jù)上述兩種情況即可得到x的取值范圍.
解答:解:如圖;
①當F、D重合時,BP的值最。
根據(jù)折疊的性質(zhì)知:AF=PF=5;
在Rt△PFC中,PF=5,F(xiàn)C=3,則PC=4;
∴BP=xmin=1;
②當E、B重合時,BP的值最大;
根據(jù)折疊的性質(zhì)知:AB=BP=3,
∴BP=xmax=3;
綜上可知:x的取值范圍是:1≤x≤3,故選C.
點評:此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設(shè)經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案