精英家教網(wǎng)如圖,四邊形ABCD中,M是AC上一點,若∠ADM=∠BDC,
AD
DM
=
BD
CD

(1)寫出圖中相似三角形(寫兩對),對其中的一對加以說明.
(2)寫出與∠DAB相等的角.
分析:由對應邊成比例即夾角相等可得其相似,再由相似可得其對應角相等.
解答:解:(1)△ADM∽△BDC,△ADB∽△MDC,(證明△ADB∽△MDC).
證明:
∵∠ADM=∠BDC,
∴∠ADM+∠MDO=∠BDC+∠MDO,
∴∠ADO=∠CDM,
AD
DM
=
BD
CD
,即
AD
BD
=
DM
CD

∴△ADB∽△CDM;

(2)∠DMC.
∵△ADB∽△CDM,
∴∠DAB=∠DMC.
點評:本題主要考查了相似三角形的判定及性質(zhì)問題,能夠熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案