如圖,已知二次函數(shù)y=x2+bx+3與x軸交于點(diǎn)B(3,0),與y軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),P是二次函數(shù)y=x2+bx+3的圖象上一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)是m,且m>3,過(guò)點(diǎn)P作PM,PM交直線AB于M.
(1)求二次函數(shù)的解析式;
(2)若以AB為直徑的⊙N恰好與直線PM相切,求此時(shí)點(diǎn)M的坐標(biāo);
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,△APM能否為等腰三角形?若能,求出點(diǎn)P的坐標(biāo);若不能請(qǐng)說(shuō)出理由.
(1)將點(diǎn)B(3,0)坐標(biāo)代入y=x2+bx+3得:0=9+3b+3,
解得b=-4,
∴二次函數(shù)的解析式為y=x2-4x+3;

(2)令x=0,則y=3,∴A點(diǎn)坐標(biāo)為A(0,3),
直線AB的解析式為y=-x+3,
C為⊙C的圓心,CA=CB=
3
2
2
,
故C點(diǎn)坐標(biāo)為(
3
2
3
2
),
過(guò)C作CD⊥PM于點(diǎn)D,CD=CA=CB=
3
2
2
,
∴D點(diǎn)坐標(biāo)為(
3
2
(1+
2
)
3
2
),
xM=
3
2
(1+
2
)

將xM=
3
2
(1+
2
)
代入y=-x+3得yM=
3
2
(1-
2
)
,
∴點(diǎn)M的坐標(biāo)為(
3
2
(1+
2
)
,
3
2
(1-
2
)
);

(3)若△APM為等腰三角形,進(jìn)行分類討論;
①當(dāng)PA=PM時(shí),P(m,m2-4m+3)則M(m,-m+3),
|PM|=|m2-3m|,|PA|=
m2+(m2-4m)2
,|AM|=
m2+(3+m-3)2
=m
2
;
由PA=PM可得|m2-3m|=
m2+(m2-4m)2

解得m=4,m2-4m+3=3,
則P點(diǎn)坐標(biāo)為P(4,3),
②當(dāng)PA=AM時(shí),
m2+(m2-4m)2
=m
2
,
解得m=3,或m=5,
當(dāng)m=3時(shí),m2-4m+3=0,由題意可知m>3,故m=3不合題意;
當(dāng)m=5時(shí),m2-4m+3=8,
故點(diǎn)P坐標(biāo)為(5,8),
③當(dāng)PA=AM時(shí),|m2-3m|=m
2
,
解得m=3+
2
或m=3-
2

由題意可知m>3,故m=3-
2
舍去,
當(dāng)m=3+
2
時(shí),m2-4m+3=2
2
+2,
故點(diǎn)P坐標(biāo)為(3+
2
,2+
2
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx-3a經(jīng)過(guò)點(diǎn)A,B,頂點(diǎn)為C,連接CB并延長(zhǎng)交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱軸MN對(duì)稱.
(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知拋物線y=-
5
4
x2+bx+c經(jīng)過(guò)點(diǎn)A(0,1)、B(3,
5
2
)兩點(diǎn),BC⊥x軸,垂足為C.點(diǎn)P是線段AB上的一動(dòng)點(diǎn)(不與A,B重合),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)連結(jié)AM、BM,設(shè)△AMB的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最大值;
(3)連結(jié)PC,當(dāng)t為何值時(shí),四邊形PMBC是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:正方形ABCO的邊長(zhǎng)為3,過(guò)A(0,3)點(diǎn)作直線AD交x軸于D點(diǎn),且D點(diǎn)的坐標(biāo)為(4,0),線段AD上有一動(dòng)點(diǎn),以每秒一個(gè)單位長(zhǎng)度的速度移動(dòng).
(1)求直線AD的解析式;
(2)若動(dòng)點(diǎn)從A點(diǎn)開始沿AD方向運(yùn)動(dòng)2.5秒時(shí)到達(dá)的位置為點(diǎn)P,求經(jīng)過(guò)B、O、P三點(diǎn)的拋物線的解析式;
(3)若動(dòng)點(diǎn)從A點(diǎn)開始沿AD方向運(yùn)動(dòng)到達(dá)的位置為點(diǎn)P1,過(guò)P1作P1E⊥x軸,垂足為E,設(shè)四邊形BCEP1的面積為S,請(qǐng)問(wèn)S是否有最大值?若有,請(qǐng)求出P點(diǎn)坐標(biāo)和S的最大值;若沒有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的頂點(diǎn)C的橫坐標(biāo)為1,一次函數(shù)y=kx+2的圖象與二次函數(shù)的圖象交于A、B兩點(diǎn),且A點(diǎn)在y軸上,以C為圓心,CA為半徑的⊙C與x軸相切,
(1)求二次函數(shù)的解析式;
(2)若B點(diǎn)的橫坐標(biāo)為3,過(guò)拋物線頂點(diǎn)且平行于x軸的直線為l,判斷以AB為直徑的圓與直線l的位置關(guān)系;
(3)在滿足(2)的條件下,把二次函數(shù)的圖象向右平移7個(gè)單位,向下平移t個(gè)單位(t>2)的圖象與x軸交于E、F兩點(diǎn),當(dāng)t為何值時(shí),過(guò)B、E、F三點(diǎn)的圓的面積最?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某校數(shù)學(xué)研究性學(xué)習(xí)小組準(zhǔn)備設(shè)計(jì)一種高為60cm的簡(jiǎn)易廢紙箱.如圖甲,廢紙箱的一面利用墻,放置在地面上,利用地面作底,其它的面用一張邊長(zhǎng)為60cm的正方形硬紙板圍成.經(jīng)研究發(fā)現(xiàn):由于廢紙箱的高是確定的,所以廢紙箱的橫截面圖形面積越大,則它的容積越大.該小組通過(guò)多次嘗試,最終選定乙圖中的簡(jiǎn)便且易操作的三種橫截面圖形.在三個(gè)圖的比較中,圖______橫截面圖形的面積最大(填序號(hào)①②③),則圍成最大的體積是______cm3.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某工廠生產(chǎn)一種合金薄板(其厚度忽略不計(jì)),這些薄板的形狀均為正方形,邊長(zhǎng)在(單位:cm)在5~50之間.每張薄板的成本價(jià)(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(jià)(單位:元)有基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與薄板的大小無(wú)關(guān),是固定不變的.浮動(dòng)價(jià)與薄板的邊長(zhǎng)成正比例.在營(yíng)銷過(guò)程中得到了表格中的數(shù)據(jù).
薄板的邊長(zhǎng)(cm)2030
出廠價(jià)(元/張)5070
(1)求一張薄板的出廠價(jià)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式;
(2)已知出廠一張邊長(zhǎng)為40cm的薄板,獲得的利潤(rùn)為26元(利潤(rùn)=出廠價(jià)-成本價(jià)),
①求一張薄板的利潤(rùn)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式.
②當(dāng)邊長(zhǎng)為多少時(shí),出廠一張薄板所獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
參考公式:拋物線:y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD中,AB=8,BC=10,點(diǎn)P在矩形的邊DC上由D向C運(yùn)動(dòng).沿直線AP翻折△ADP,形成如下四種情形.設(shè)DP=x,△ADP和矩形重疊部分(陰影)的面積為y.

(1)如圖丁,當(dāng)點(diǎn)P運(yùn)動(dòng)到與C重合時(shí),求重疊部分的面積y;
(2)如圖乙,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),翻折△ADP后,點(diǎn)D恰好落在BC邊上這時(shí)重疊部分的面積y等于多少?
(3)閱讀材料:已知銳角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα來(lái)表示,即tan2α=
2tanα
1-(tanα)2
(α≠45°).根據(jù)上述閱讀材料,求出用x表示y的解析式,并指出x的取值范圍.
(提示:在圖丙中可設(shè)∠DAP=a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某建筑物的窗戶如圖所示,它的上半部是半圓,下半部是矩形,制造窗框的材料總長(zhǎng)(圖中所有黑線的長(zhǎng)度和)為10米.當(dāng)x等于多少米時(shí),窗戶的透光面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案