精英家教網 > 初中數學 > 題目詳情

【題目】如圖,平面直角坐標系中,點、點軸上(點在點的左側),點在第一象限,滿足為直角,且恰使∽△,拋物線經過、三點.

1)求線段的長;

2)求點的坐標及該拋物線的函數關系式;

3)在軸上是否存在點,使為等腰三角形?若存在,求出所有符合條件的點的坐標,若不存在,請說明理由.

【答案】1OB=6,=;(2的坐標為;;(3)存在,,

【解析】

1)根據題意先確定OA,OB的長,再根據△OCA∽△OBC,可得出關于OCOA、OB的比例關系式即可求出線段的長;

2)由題意利用相似三角形的對應邊成比例和勾股定理來求C點的坐標,并將C點坐標代入拋物線中即可求出拋物線的解析式;

3)根據題意運用等腰三角形的性質,對所有符合條件的點的坐標進行討論可知有四個符合條件的點,分別進行分析求解即可.

解:(1)由

,即:

舍去)

線段的長為.

2

,

,

,

解得-2舍去),

,

過點于點

由面積得,的坐標為

點的坐標代入拋物線的解析式得

.

3)存在,

①當P1O重合時,△BCP1為等腰三角形

P1的坐標為(00);

②當P2B=BC時(P2B點的左側),△BCP2為等腰三角形

P2的坐標為(6-2,0);

③當P3AB的中點時,P3B=P3C,△BCP3為等腰三角形

P3的坐標為(4,0);

④當BP4=BC時(P4B點的右側),△BCP4為等腰三角形

P4的坐標為(6+20);

∴在x軸上存在點P,使△BCP為等腰三角形,符合條件的點P的坐標為:

,.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=ax+1x軸、y軸分別相交于AB兩點,與雙曲線y=x0)相交于點PPCx軸于點C,且PC=2,點A的坐標為(﹣2,0).

1)求雙曲線的解析式;

2)若點Q為雙曲線上點P右側的一點,且QHx軸于H,當以點Q、C、H為頂點的三角形與AOB相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店購進一種商品,每件商品進價30元試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)

與每件銷售價x(元)的關系數據如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數關系,根據上表,求出y與x之間的關系式(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應定為多少元?

(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在圓O中,弦ACBD相交于點M,且∠A=∠B

1)求證:ACBD;

2)若OA4,∠A30°,當ACBD時,求弧CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,∠ABC30°,BC2.將△ABC繞點C逆時針旋轉某個角度后得到△ABC,當點A的對應點A′落在AB邊上時,陰影部分的面積為___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線軸交于點,與反比例函數的圖象交于,兩點,的面積為.

1)求一次函數的解析式;

2)求點坐標和反比例函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點,與y軸交于點C,且OA=2OC=3

(1)求拋物線的解析式.

(2)若點D(2,2)是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點P,使得△BDP的周長最小,若存在,請求出點P的坐標,若不存在,請說明理由.

注:二次函數≠0)的對稱軸是直線=.

查看答案和解析>>

同步練習冊答案