【題目】在平面直角坐標(biāo)系xOy中,的頂點(diǎn)坐標(biāo)分別是,對(duì)于的橫長(zhǎng)、縱長(zhǎng)、縱橫比給出如下定義:
將中的最大值,稱為的橫長(zhǎng),記作;將中的最大值,稱為的縱長(zhǎng),記作;將叫做的縱橫比,記作.
例如:如圖的三個(gè)頂點(diǎn)的坐標(biāo)分別是,則,
所以.
如圖2,點(diǎn),
點(diǎn),
則的縱橫比______
的縱橫比______;
點(diǎn)F在第四象限,若的縱橫比為1,寫出一個(gè)符合條件的點(diǎn)F的坐標(biāo);
點(diǎn)M是雙曲線上一個(gè)動(dòng)點(diǎn),若的縱橫比為1,求點(diǎn)M的坐標(biāo);
如圖3,點(diǎn)以為圓心,1為半徑,點(diǎn)N是上一個(gè)動(dòng)點(diǎn),直接寫出的縱橫比的取值范圍.
【答案】 1
【解析】分析:(1)①根據(jù)縱橫比的定義計(jì)算即可;
②點(diǎn)F在第四象限的角平分線上即可;
③分三種情形討論即可.
(2)如圖3中,當(dāng)當(dāng)時(shí),可得的縱橫比的最大值,
當(dāng)與相切時(shí),切點(diǎn)在第二象限時(shí),可得的縱橫比的最小值.
詳解:
由題意的縱橫比的縱橫比,
故答案為.
由點(diǎn)F在第四象限,若的縱橫比為1,則在第四象限的角平分線上即可.
如圖設(shè)
a、當(dāng)時(shí),點(diǎn)M在上,則,
此時(shí)的橫長(zhǎng)的縱長(zhǎng)為,
的縱橫比為1,
,
或舍棄,
,
.
b、當(dāng)時(shí),點(diǎn)M在上,則,
此時(shí)的橫長(zhǎng)的縱長(zhǎng)為,
的縱橫比為1,
,
舍棄,
c、當(dāng)時(shí),點(diǎn)M在上,則,
此時(shí)的橫長(zhǎng)的縱長(zhǎng)為,
的縱橫比為1,
,
或舍棄,
,
,
綜上所述,點(diǎn)M坐標(biāo)為或
如圖3中,當(dāng)時(shí),可得的縱橫比的最大值,
當(dāng)與相切時(shí),切點(diǎn)在第二象限時(shí),可得的縱橫比的最小值,
,
,
,
,易知,作于H.
,
,
此時(shí)的縱橫比,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程是刻畫現(xiàn)實(shí)世界的有效模型,表格是建立方程的策略之一.請(qǐng)?zhí)顚懕砀駭?shù)據(jù),并列方程解決問題.輪船和汽車都從甲地開往乙地,海路比公路近40千米,輪船上午7點(diǎn)開出,速度是每小時(shí)24千米.汽車上午10點(diǎn)開出,速度為每小時(shí)40千米,結(jié)果同時(shí)到達(dá)了乙地.求甲、乙兩地的海路和公路長(zhǎng).
速度 | 時(shí)間 | 路程 | |
汽車 | 40 |
| x |
輪船 | 24 |
|
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OE平分∠AOD,OF⊥OC .
(1)圖中∠AOF的余角是_____________ (把符合條件的角都填上);
(2)如果∠1=28° ,求∠2和∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠C=90°,點(diǎn)O為△ABC三條角平分線的交點(diǎn),OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,則點(diǎn)O到三邊AB、AC、BC的距離為( 。
A.2cm,2cm,2cmB.3cm,3cm,3cmC.4cm,4cm,4cmD.2cm,3cm,5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.一副三角板如圖所示擺放, OA邊和OC邊與直線EF重合,∠ AOB=45°,∠COD =60°.
(1)求圖1中∠ BOD的度數(shù)是多少;
(2) 如圖2,三角板COD固定不動(dòng),若將三角板AOB繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)一個(gè)角度 ,在轉(zhuǎn)動(dòng)過程中當(dāng)OB分別平分∠EOD、∠DOC時(shí),求此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖EF∥AD,∠1=∠2,∠BAC=70。將求∠AGD的過程填寫完整。
∵EF∥AD(已知)
∴∠2=__________( )
又∵∠1=∠2( )
∴∠1=∠3( )
∴AB∥________( )
∴∠BAC+__________=180( )
又∵∠BAC=70( )
∴∠AGD=180 —__________=________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
北京市正圍繞“政治中心、文化中心、國(guó)際交往中心、科技創(chuàng)新中心“的定位,深入實(shí)施”人文北京、科技北京、綠色北京”的發(fā)展戰(zhàn)略.“十二五”期間,北京市文化創(chuàng)意產(chǎn)業(yè)展現(xiàn)了良好的發(fā)展基礎(chǔ)和巨大的發(fā)展?jié)摿,已?jīng)成為首都經(jīng)濟(jì)增長(zhǎng)的支柱產(chǎn)業(yè).
2011年,北京市文化創(chuàng)意產(chǎn)業(yè)實(shí)現(xiàn)增加值1938.6億元,占地區(qū)生產(chǎn)總值的12.1%.2012年,北京市文化創(chuàng)意產(chǎn)業(yè)繼續(xù)呈現(xiàn)平穩(wěn)發(fā)展態(tài)勢(shì),實(shí)現(xiàn)產(chǎn)業(yè)增加值2189.2億元,占地區(qū)生產(chǎn)總值的12.3%,是第三產(chǎn)業(yè)中僅次于金融業(yè)、批發(fā)和零售業(yè)的第三大支柱產(chǎn)業(yè).2013年,北京市文化產(chǎn)業(yè)實(shí)現(xiàn)增加值2406.7億元,比上年增長(zhǎng)9.1%.文化創(chuàng)意產(chǎn)業(yè)作為北京市支柱產(chǎn)業(yè)已經(jīng)排到了第二位.2014年,北京市文化創(chuàng)意產(chǎn)業(yè)實(shí)現(xiàn)增加值2749.3億元,占地區(qū)生產(chǎn)總值的13.1%,創(chuàng)歷史新高.2015年,北京市文化創(chuàng)意產(chǎn)業(yè)發(fā)展總體平穩(wěn),實(shí)現(xiàn)產(chǎn)業(yè)增加值3072.3億元,占地區(qū)生產(chǎn)總值的13.4%.
(以上數(shù)據(jù)來源于北京市統(tǒng)計(jì)局)
根據(jù)以上材料解答下列問題:
(1)用折線圖將2011-2015年北京市文化創(chuàng)意產(chǎn)業(yè)實(shí)現(xiàn)增加值表示出來,并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)根據(jù)繪制的折線圖中提供的信息,預(yù)估 2016年北京市文化創(chuàng)意產(chǎn)業(yè)實(shí)現(xiàn)增加值約 億元,你的預(yù)估理由 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組在學(xué)習(xí)了函數(shù)及函數(shù)圖象的知識(shí)后,想利用此知識(shí)來探究周長(zhǎng)一定的矩形其邊長(zhǎng)分別為多少時(shí)面積最大請(qǐng)將他們的探究過程補(bǔ)充完整。
(1)列函數(shù)表達(dá)式:若矩形的周長(zhǎng)為8,設(shè)矩形的一邊長(zhǎng)為x,面積為y,則有y=_________。
(2)上述函數(shù)表達(dá)式中,自變量x的取值范圍是____________;
(3)列表:
x | ... | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | ... |
y | ... | 1.75 | 3 | 3.75 | 4 | 3.75 | 3 | m | ... |
寫出m=__________;
(4)畫圖:在平面直角坐標(biāo)系中已描出了上表中部分各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),請(qǐng)你畫出該函數(shù)的圖象;
(5)結(jié)合圖象可得:x=_______時(shí),矩形的面積最大: 寫出該函數(shù)的其它性質(zhì)(一條即可):_______________________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com