【題目】王華在學(xué)習(xí)相似三角形時(shí),在北京市義務(wù)教育課程改革實(shí)驗(yàn)教材第17冊(cè)書,第31頁(yè)遇到這樣一道題:
如圖1,在△ABC中,P是邊AB上的一點(diǎn),聯(lián)結(jié)CP.
要使△ACP∽△ABC,還需要補(bǔ)充的一個(gè)條件是__,或__.
(1)王華補(bǔ)充的條件是 , 或 .
(2)請(qǐng)你參考上面的圖形和結(jié)論,探究、解答下面的問(wèn)題:
如圖2,在△ABC中,∠A=30°,AC2= AB2+AB.BC.
求∠C的度數(shù).
【答案】
(1)∠ACP=∠B(或∠APC=∠ACB),或AC2=AP?AB
(2)解:延長(zhǎng)AB到點(diǎn)D,使BD=BC,連接CD,如圖所示:
∵AC2=AB2+ABBC=AB(AB+BC)=AB(AB+BD)=ABAD,
∴ ,
又∵∠A=∠A,∴△ACB∽△ADC,
∴∠ACB=∠D,
∵BC=BD,
∴∠BCD=∠D,
在△ACD中,∠ACB+∠BCD+∠D+∠A=180°,
∴3∠ACB+30°=180°,
∴∠ACB=50°
【解析】解:(1)王華補(bǔ)充的條件是:∠ACP=∠B(或∠APC=∠ACB);或AC2=APAB;理由如下:
∵∠A=∠A,
∴當(dāng)∠ACP=∠B,或∠APC=∠ACB;
或 ,即AC2=APAB時(shí),△ACP∽△ABC;
【考點(diǎn)精析】利用三角形的內(nèi)角和外角和相似三角形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市場(chǎng)上甲種商品的采購(gòu)價(jià)為60元/件,乙種商品的采購(gòu)價(jià)為100元/件,某商店需要采購(gòu)甲、乙兩種商品共15件,且乙種商品的件數(shù)不少于甲種商品件數(shù)的2倍.設(shè)購(gòu)買甲種商品件(>0),購(gòu)買兩種商品共花費(fèi)元.
(1)求出與的函數(shù)關(guān)系式(寫出自變量的取值范圍);
(2)試?yán)煤瘮?shù)的性質(zhì)說(shuō)明,當(dāng)采購(gòu)多少件甲種商品時(shí),所需要的費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面內(nèi)一點(diǎn)P,若點(diǎn)P到兩條相交直線l1和l2的距離都相等,且距離均為h(h>0),則稱點(diǎn)P叫做直線l1和l2的“h距離點(diǎn)”. 例如圖1所示,直線l1和l2互相垂直,交于O點(diǎn),平面內(nèi)一點(diǎn)P到兩直線的距離都是2,則稱點(diǎn)P叫做直線l1和l2的“2距離點(diǎn)”.
(1)若直線l1和l2互相垂直,且交于O點(diǎn),平面內(nèi)一點(diǎn)P是直線l1和l2的“7距離點(diǎn)”,直接寫出OP的長(zhǎng)度為 ;
(2)如圖2所示,直線l1和l2相交于點(diǎn)O,夾角為60°,已知平面內(nèi)一點(diǎn)P是直線l1和l2的“3距離點(diǎn)”,求出OP的長(zhǎng)度;
(3)已知三條直線兩兩相交后形成一個(gè)等邊三角形,如圖3所示,在等邊△ABC中,點(diǎn)P是三角形內(nèi)部一點(diǎn),且點(diǎn)P分別是等邊△ABC三邊所在直線的“距離點(diǎn)”,請(qǐng)你直接寫出△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一副直角三角板如圖①放置(其中,),、與直線重合,且三角板,三角板均可以繞點(diǎn)逆時(shí)針旋轉(zhuǎn).
(l)直接寫出等于多少度.
(2)如圖②,若三角板保持不動(dòng),三角板繞點(diǎn)逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為/秒,轉(zhuǎn)動(dòng)一周三角板就停止轉(zhuǎn)動(dòng),在旋轉(zhuǎn)的過(guò)程中,當(dāng)旋轉(zhuǎn)時(shí)間為多少時(shí),有成立.
(3)如圖③,在圖①基礎(chǔ)上,若三角板的邊從.處開(kāi)始繞點(diǎn)逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為/秒,同時(shí)三角板的邊從處開(kāi)始繞點(diǎn)逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為/秒,(當(dāng)轉(zhuǎn)到與重合時(shí),兩三角板都停止轉(zhuǎn)動(dòng)),在旋轉(zhuǎn)過(guò)程中,當(dāng),求旋轉(zhuǎn)的時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司以每噸元的價(jià)格收購(gòu)了噸某種藥材,若直接在市場(chǎng)上銷售,每噸的售價(jià)是元.該公司決定加工后再出售,相關(guān)信息如下表所示:
工藝 | 每天可加工藥材的噸數(shù) | 成品率 | 成品售價(jià) (元/噸) |
粗加工 | 14 | 80% | 6000 |
精加工 | 6 | 60% | 11000 |
(注:①成品率80%指加工100噸原料能得到80噸可銷售藥材;②加工后的廢品不產(chǎn)生效益.)
受市場(chǎng)影響,該公司必須在天內(nèi)將這批藥材加工完畢.
(1)若全部粗加工,可獲利_______________________元;
(2)若盡可能多的精加工,剩余的直接在市場(chǎng)上銷售,可獲利_____________元;
(3)若部分粗加工,部分精加工,恰好天完成,求可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解決問(wèn)題:
一輛貨車從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.
(1)以超市為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.
(2)小明家距小彬家多遠(yuǎn)?
(3)貨車每千米耗油0.2升,這次共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角△ABC中,∠ACB=90°,∠A=55°,將其折疊,使點(diǎn)A落在CB上的A′處,折痕CD,則∠A′DB= ( )
A. 10° B. 20° C. 30° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程組解應(yīng)用題:
為了保護(hù)環(huán)境,深圳某公交公司決定購(gòu)買一批共10臺(tái)全新的混合動(dòng)力公交車,現(xiàn)有A、B兩種型號(hào),其中每臺(tái)的價(jià)格,年省油量如下表:
A | B | |
價(jià)格(萬(wàn)元/臺(tái)) | a | b |
節(jié)省的油量(萬(wàn)升/年) | 2.4 | 2 |
經(jīng)調(diào)查,購(gòu)買一臺(tái)A型車比購(gòu)買一臺(tái)B型車多20萬(wàn)元,購(gòu)買2臺(tái)A型車比購(gòu)買3臺(tái)B型車少60萬(wàn)元.
(1)請(qǐng)求出a和b;
(2)若購(gòu)買這批混合動(dòng)力公交車每年能節(jié)省22.4萬(wàn)汽油,求購(gòu)買這批混合動(dòng)力公交車需要多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB=60cm,在直線AB上畫線段BC,使BC=20cm,點(diǎn)D是AC的中點(diǎn),求CD的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com