如圖,已知O為原點(diǎn),點(diǎn)A的坐標(biāo)為(4,3),⊙A的半徑為2,過A作直線L平行于x軸,點(diǎn)P在直線L上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)P在⊙A上時(shí),請(qǐng)直接寫出它的坐標(biāo);
(2)設(shè)點(diǎn)P的橫坐標(biāo)為6
2
,試判斷直線OP與⊙A的位置關(guān)系,并說明理由.
分析:(1)由題意知,點(diǎn)P的縱坐標(biāo)與點(diǎn)B的縱坐標(biāo)相同,即為3;當(dāng)點(diǎn)P在BA之間時(shí),它的橫坐標(biāo)為4-2=2;當(dāng)點(diǎn)在BA的延長(zhǎng)線上時(shí),它的橫坐標(biāo)為4+2=6.
(2)連接OP,過點(diǎn)A作AC⊥OP,垂足為C.則有△APC∽△OPB,求得AC的值,與圓A的半徑比較,即可得到OP與圓A的位置關(guān)系.
解答:解:(1)點(diǎn)P的坐標(biāo)是(2,3)或(6,3).

(2)連接OP,過點(diǎn)A作AC⊥OP,垂足為C.
那么AP=PB-AB=6
2
-4,OB=3,
OP=
(6
2
)
2
+32
=9.
∵∠ACP=∠OBP=90°,∠1=∠1,
∴△APC∽△OPB.
AC
OB
=
AP
OP

AC
3
=
6
2
-4
9

∴AC=2
2
-
4
3
≈1.5<2.
∴直線OP與⊙A相交.
點(diǎn)評(píng):此題主要考查了直線和圓位置關(guān)系應(yīng)用的典型題目,解題的關(guān)鍵是作出圓心到直線的距離,利用勾股定理和相似三角形的性質(zhì)求得此值,再進(jìn)行判斷,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知O為原點(diǎn),點(diǎn)A的坐標(biāo)為(4,3),⊙A的半徑為2.過A作直線l平行于x軸,交y軸于精英家教網(wǎng)點(diǎn)B,點(diǎn)P在直線l上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)P在⊙A上時(shí),請(qǐng)你直接寫出它的坐標(biāo);
(2)設(shè)點(diǎn)P的橫坐標(biāo)為12,試判斷直線OP與⊙A的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知O為原點(diǎn),點(diǎn)A的坐標(biāo)為(5.5,4),⊙A的半徑為2.過A作直線l平行于x軸,交y軸于點(diǎn)B,點(diǎn)P在直線l上運(yùn)動(dòng).
(1)設(shè)點(diǎn)P的橫坐標(biāo)為12,試判斷直線OP與⊙A的位置關(guān)系,并說明理由;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為a,請(qǐng)你求出當(dāng)直線OP與⊙A相切時(shí)a的值.
(參考數(shù)據(jù):
10
≈3.162
,
676
=26

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知O為原點(diǎn),點(diǎn)A的坐標(biāo)為(5.5,4),⊙A的半徑為2.過A作直線l平行于x軸,交y軸于點(diǎn)B,點(diǎn)P在直線l上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)P在圓上時(shí),寫出點(diǎn)P的坐標(biāo);
(2)設(shè)點(diǎn)P的橫坐標(biāo)為12,試判斷直線OP與⊙A的位置關(guān)系,并說明理由;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為a,請(qǐng)你求出當(dāng)直線OP與⊙A相切時(shí)a的值(參考數(shù)據(jù):
10
≈3.162,
676
=26)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知O為原點(diǎn),點(diǎn)A的坐標(biāo)為(4,3),⊙A的半徑為2.過A作直線l平行于x軸,點(diǎn)P在直線l上運(yùn)動(dòng).當(dāng)點(diǎn)P的橫坐標(biāo)為12時(shí),直線OP與⊙A的位置關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案