【題目】如圖所示,AB是⊙O的直徑,點C是中點,∠COB=60°,過點C作CE⊥AD,交AD的延長線于點E
(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.
【答案】(1)證明見解析(2)四邊形AOCD是菱形
【解析】試題分析:(1)連接OD,可證明△AOD為等邊三角形,可得到∠EAO=∠COB,可證明OC∥AE,可證得結(jié)論;
(2)利用△OCD和△AOD都是等邊三角形可證得結(jié)論.
試題解析:(1)連接OD,如圖,∵C是的中點,∴∠BOC=∠COD=60°,∴∠AOD=60°,且OA=OD,
∴△AOD為等邊三角形,∴∠EAB=∠COB,∴OC∥AE,∴∠OCE+∠AEC=180°,∵CE⊥AE,∴∠OCE=180°﹣90°=90°,即OC⊥EC,∵OC為圓的半徑,∴CE為圓的切線;
(2)四邊形AOCD是菱形,理由如下:由(1)可知△AOD和△COD均為等邊三角形,
∴AD=AO=OC=CD,∴四邊形AOCD為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】某個數(shù)用科學記數(shù)法表示為5.8×10﹣4 , 則這個數(shù)( 。
A.0.0058
B.0.00058
C.0.000058
D.0.0000058
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,請完成下列表格:
事件A | 必然事件 | 隨機事件 |
m的值 | 4 | 2,3 |
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一張試卷共有25道題,若做對1題得4分,做錯1題扣1分,小明做了全部試題只得了70分,那么小明做對了( )
A. 17道 B. 18道 C. 19道 D. 20道
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中正確的是( )
A. 兩條直線被第三條直線所截,內(nèi)錯角相等
B. 平行四邊形的對角線相等
C. 三角形的外心到三角形三個頂點的距離相等
D. 對角線互相垂直的四邊形是菱形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com