【題目】定義:有一個內角為90°,且對角線相等的四邊形稱為準矩形.
(1)①如圖1,準矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD=;
②如圖2,直角坐標系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標是;(整點指橫坐標、縱坐標都為整數(shù)的點)
(2)如圖2,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;
(3)已知,準矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當△ADC為等腰三角形時,請直接寫出這個準矩形的面積是 .
【答案】
(1),(5,3),(3,5)
(2)解:∵四邊形ABCD是正方形,
∴AB=BC∠A=∠ABC=90°,
∴∠EAF+∠EBC=90°,
∵BE⊥CF,
∴∠EBC+∠BCF=90°,
∴∠EBF=∠BCF,
∴△ABE≌△BCF,
∴BE=CF,
∴四邊形BCEF是準矩形;
(3) ; ;
【解析】(1)根據勾股定理求出矩形對角線的長即可;(2)根據正方形的性質得到四邊相等、四角相等,得到△ABE≌△BCF,得到對應邊相等,得到四邊形BCEF是準矩形;(3)根據已知條件和特殊角的函數(shù)值,再由勾股定理求出這個準矩形的面積.
【考點精析】解答此題的關鍵在于理解矩形的性質的相關知識,掌握矩形的四個角都是直角,矩形的對角線相等.
科目:初中數(shù)學 來源: 題型:
【題目】點A、B、C為直線l上三點,點P為直線l外一點,且PA=3cm,PB=4cm,PC=5cm,則點P到直線l的距離為( )
A.2cmB.3cmC.小于3cmD.不大于3cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知多項式2x2+bx+c分解因式為2(x﹣3)(x+1),則b、c的值為( )
A.b=3,c=﹣1
B.b=﹣6,c=2
C.b=﹣6,c=﹣4
D.b=﹣4,c=﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在創(chuàng)建“全國園林城市”期間,郴州市某中學組織共青團員去植樹,其中七位同學植樹的棵樹分別為:3,1,1,3,2,3,2,這組數(shù)據的中位數(shù)和眾數(shù)分別是( )
A.3,2
B.2,3
C.2,2
D.3,3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A(﹣3,﹣6)向上平移3個單位,再向左平移2個單位到點B,則點B的坐標為( )
A.(0,﹣2)B.(﹣5,﹣8)C.(﹣5,﹣3)D.(0,﹣3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形 的頂點 的坐標為 ,動點 從原點 出發(fā),以每秒 個單位的速度沿折線 運動,到點 時停止,同時,動點 從點 出發(fā),以每秒 個單位的速度在線段 上運動,當一個點停止時,另一個點也隨之停止.在運動過程中,當線段 恰好經過點 時,運動時間 的值是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com