C
分析:由題意根據(jù)直角三角形的判定及相似三角形的判定方法,對各選項一一分析,選出正確答案.
解答:①因為∠A+∠2=90°,∠1=∠A,所以∠1+∠2=90°,即△ABC為直角三角形,故正確;
②根據(jù)CD
2=AD•DB得到
,再根據(jù)∠ADC=∠CDB=90°,則△ACD∽△CBD,∴∠1=∠A,∠2=∠B,根據(jù)三角形內角和定理可得:∠ACB=90°,故正確;
③因為∠B+∠2=90°,∠B+∠1=90°,所以推出∠1=∠2,無法得到兩角和為90°,故錯誤;
④設BC的長為3x,那么AC為4x,AB為5x,由9x
2+16x
2=25x
2,符合勾股定理的逆定理,故正確;
⑤由三角形的相似無法推出AC•BD=AD•CD成立,所以△ABC不是直角三角形,故錯誤.
所以正確的有三個.
故選C.
點評:此題主要考查直角三角形的判定及相似三角形的判定方法的運用.通過證明把題目中的條件進行轉化,是解題的關鍵.