(2008•遼寧)如圖,AB為⊙O的直徑,D為弦BE的中點,連接OD并延長交⊙O于點F,與過B點的切線相交于點C.若點E為的中點,連接AE.
求證:△ABE≌△OCB.

【答案】分析:AB是圓的直徑,我們可得出∠E為直角,BC切圓于B點,那么CB⊥AB,由此我們就得出了∠E=∠OBC=90°,D為弦BE的中點,根據(jù)垂徑定理我們不難得出,弧EF=弧BF,又有弧AE=弧EF,那么弧AE=弧EF=弧BF,由此我們可得出∠ABE=30°以及∠BOC=∠A,在Rt△ABE中,AE=AB=OB,這樣就達到了全等三角形判定里的角角邊的條件.
解答:證明:如圖.
∵AB是⊙O的直徑,
∴∠E=90°,
又∵BC是⊙O的切線,∴∠OBC=90°.
∴∠E=∠OBC.
∵OD過圓心,BD=DE,

∴∠BOC=∠A,
∵E為中點,

連接OE,
∴∠AOE=60°,
∴∠ABE=30°.
∵∠E=90°,
∴AE=AB=OB.
∴△ABE≌△OCB.
點評:考查圓周角、圓心角、垂徑定理、三角形全等的問題.命題者的意圖是考查學生邏輯推理能力以及公理化的思想.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:填空題

(2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點,圓心P的坐標為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左移動,當⊙P與該直線相交時,橫坐標為整數(shù)的點P有    個.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標;
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標;若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最。咳舸嬖,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《平面直角坐標系》(02)(解析版) 題型:填空題

(2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點,圓心P的坐標為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左移動,當⊙P與該直線相交時,橫坐標為整數(shù)的點P有    個.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省莆田市中考數(shù)學仿真模擬試卷(三)(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標;
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標;若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最小?若存在,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年遼寧省十二市中考數(shù)學試卷(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標;
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標;若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最?若存在,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案