【題目】如圖,已知A(3,1),B(1,0),PQ是直線y=x上的一條動線段且PQ=(Q在P的下方),當AP+PQ+QB取最小值時,點Q坐標為______.
【答案】(,)
【解析】
作點B關于直線y=x的對稱點B'(0,1),過點A作直線MN∥PQ,并沿MN把點A向下平移單位后得A'(2,0),連接A'B'交直線y=x于點Q,求出直線A'B'解析式,與y=x組成方程組,可求Q點坐標.
解:作點B關于直線y=x的對稱點B'(0,1),過點A作直線MN∥PQ,并沿MN把點A向下平移單位后得A'(2,0),連接A'B'交直線y=x于點Q,如圖,
∵AA'=PQ=,AA'∥PQ,
∴四邊形APQA'是平行四邊形.
∴AP=A'Q.
∵AP+PQ+QB=B'Q+A'Q+PQ且PQ=.
∴當A'Q+B'Q值最小時,AP+PQ+QB值最。
根據兩點之間線段最短,即A',Q,B'三點共線時A'Q+B'Q值最。
∵B'(0,1),A'(2,0),
∴直線A'B'的解析式y=-x+1.
∴x=-x+1.即x=,
∴Q點坐標(,).
故答案是:(,).
科目:初中數(shù)學 來源: 題型:
【題目】以一個等腰直角三角形的腰為邊分別向形外做等邊三角形,我們把這兩個等邊三角形重心之間的距離稱作這個等腰直角三角形的“肩心距”.如果一個等腰直角三角形的腰長為2,那么它的“肩心距” .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對稱軸是直線x=1.
(1)求拋物線的表達式;
(2)點D(n,y1),E(3,y2)在拋物線上,若y1<y2,請直接寫出n的取值范圍;
(3)設點M(p,q)為拋物線上的一個動點,當﹣1<p<2時,點M關于y軸的對稱點都在直線y=kx﹣4的上方,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1,以下結論:①abc>0;②3a+c>0;③m為任意實數(shù),則有a(m2+1)+bm≥0;④若(﹣2,y1),(5,y2)是拋物線上的兩點,則y1<y2,正確的有( 。﹤.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著經濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注.某校學生會為了了解垃圾分類知識的普及情況,隨機調查了部分學生,調查結果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調查結果繪制成下面兩幅統(tǒng)計圖.
(1)求:本次被調查的學生有多少名?補全條形統(tǒng)計圖.
(2)估計該校1200名學生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調查的“非常了解”的學生中有2名男生,其余為女生,從中隨機抽取2人在全校做垃圾分類知識交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長BA到D,使∠BDC=30°.
(1)求證:DC是⊙O的切線;
(2)若AB=2,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店出售某品牌的棉衣,進價為100元/件,當售價為150元/件時,平均每天可賣30件;為了增加利潤和減少庫存,商店決定降價銷售.經調査,每件每降價1元,則每天可多賣2件.
(1)若每件降價20元,則平均每天可賣______件.
(2)現(xiàn)要想平均每天獲利2000元,且讓顧客得到實惠,求每件棉衣應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關于x的函數(shù)解析式為 且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).
(1)m= ,n= ;
(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?
(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com