當(dāng)x的值為-3時(shí),代數(shù)式-3x2+ax-7的值是-25,則當(dāng)x=-1時(shí),這個(gè)代數(shù)式的值為_(kāi)_______.

-7
分析:本題是帶有參數(shù)的代數(shù)式求值問(wèn)題,求解時(shí)可以先將x=-3代入-3x2+ax-7=-25,求出a的值,然后將a的值與x=-1一同代入-3x2+ax-7=-25求解即可.
解答:由題意可知,當(dāng)x=-3時(shí),-3x2+ax-7=-25得,a=-3,將a=-3、x=-1代入-3x2+(-3x)-7得,-3×(-1)2+(-3)×(-1)-7=-7.
點(diǎn)評(píng):這種類(lèi)型的試題求解時(shí),首先要求出參數(shù)的值,然后再將它們一同代入求解即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)拋物線(xiàn)的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中字母取值的不同,拋物線(xiàn)的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線(xiàn)y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
x0=m  (3)
y0=2m-1  (4)

∴拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(m,2m-1),設(shè)頂點(diǎn)為P(x0,y0),則:
當(dāng)m的值變化時(shí),頂點(diǎn)橫、縱坐標(biāo)x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見(jiàn),不論m取任何實(shí)數(shù)時(shí),拋物線(xiàn)的頂點(diǎn)坐標(biāo)都滿(mǎn)足y=2x-1.
根據(jù)閱讀材料提供的方法,確定拋物線(xiàn)y=x2-2mx+2m2-4m+3的頂點(diǎn)縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:當(dāng)拋物線(xiàn)的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中字母取值的不同,拋物線(xiàn)的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線(xiàn)y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(m,2m-1),設(shè)頂點(diǎn)為P(x0,y0),則:
x0=m        …(3)
y0=2m-1  …(4)

當(dāng)m的值變化時(shí),頂點(diǎn)橫、縱坐標(biāo)x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見(jiàn),不論m取任何實(shí)數(shù)時(shí),拋物線(xiàn)的頂點(diǎn)坐標(biāo)都滿(mǎn)足y=2x-1.
解答問(wèn)題:
①在上述過(guò)程中,由(1)到(2)所用的數(shù)學(xué)方法是
 
,其中運(yùn)用的公式是
 
.由(3)、(4)得到(5)所用的數(shù)學(xué)方法是
 

②根據(jù)閱讀材料提供的方法,確定拋物線(xiàn)y=x2-2mx+2m2-4m+3的頂點(diǎn)縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.
③是否存在實(shí)數(shù)m,使拋物線(xiàn)y=x2-2mx+2m2-4m+3與x軸兩交點(diǎn)A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說(shuō)明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料,解答問(wèn)題.
當(dāng)拋物線(xiàn)的表達(dá)式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線(xiàn)的頂點(diǎn)坐標(biāo)出將發(fā)生變化.
例如:由拋物線(xiàn)y=x2-2mx+m2+2m-1,…①
有y=(x-m)2+2m-1,…②
∴拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(m,2m-1)
即x=m …③
y=2m-1 …④
當(dāng)m的值變化時(shí),x、y的值也隨之變化,因而y值也隨x值的變化而變化
將③代入④,得y=2x-1…⑤
可見(jiàn),不論m取任何實(shí)數(shù),拋物線(xiàn)頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿(mǎn)足關(guān)系式y(tǒng)=2x-1.
解答問(wèn)題:
(1)在上述過(guò)程中,由①到②所用的數(shù)學(xué)方法是
 
,由③、④到⑤所用到的數(shù)學(xué)方法是
 

(2)根據(jù)閱讀材料提供的方法,確定拋物線(xiàn)y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用整體思想解題:為了簡(jiǎn)化問(wèn)題,我們往往把一個(gè)式子看成一個(gè)數(shù)的整體.試按提示解答下面問(wèn)題.
(1)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,求當(dāng)x=2時(shí)B+C的值.
提示:B+C=(A+B)-(A-C).
(2)若代數(shù)式2x2+3y+7的值為8,求代數(shù)式6x2+9y+8的值.
提示:把6x2+9 y+8變形為含有2x2+3y+7的形式.
(3)已知
xy
x+y
=2
,求代數(shù)式
3x-5xy+3y
-x+3xy-y
的值.
提示:把xy和x+y當(dāng)做一個(gè)整體;由已知得xy=2(x+y),代入
3x-5xy+3y
-x+3xy-y

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:當(dāng)拋物線(xiàn)的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線(xiàn)的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線(xiàn)y=x2-2mx+m2+2m-1,配方得y=(x-m)2+2m-1,∴拋物線(xiàn)頂點(diǎn)坐標(biāo)為(m,2m-1).即 
x=m
y=2m-1
,當(dāng)m的值變化時(shí),x,y的值也隨之變化,因而y的值也隨x值的變化而變化.將(1)代(2),得y=2x-1.可見(jiàn),不論m取任何實(shí)數(shù),拋物線(xiàn)頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿(mǎn)足關(guān)系式:y=2x-1;根據(jù)閱讀材料提供的方法,確定拋物線(xiàn)y=x2-2mx+2m2-3m+1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案