如圖,在菱形ABCD中,∠A=60°,E、F分別是AB、AD的中點,若EF=2,則菱形ABCD的邊長是________.

4
分析:△ABD是等邊三角形.根據(jù)中位線定理易求BD.
解答:在菱形ABCD中,∠A=60°,
∴△AEF是等邊三角形.
∵E、F分別是AB、AD的中點,
∴AB=2AE=2EF=2×2=4.
故答案為,4.
點評:本題考查了三角形中位線及菱形的性質(zhì),比較簡單.如果三角形中位線的性質(zhì)沒有記住,還可以利用△AEF與△ABD的相似比為1:2,得出正確結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點,P為對角線BD上任意一點,AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為
1
1
時,四邊形AMDN是矩形;
           ②當AM的值為
2
2
時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案