代數(shù)式a+
c
b
的意義為( 。
A、a與c除b的商的和
B、b除以c的商與a的和
C、a與c除以b的商的和
D、a與c的和除以b的商
分析:說出代數(shù)式的意義,實際上就是把代數(shù)式用語言敘述出來.?dāng)⑹鰰r,要求既要表明運(yùn)算的順序,又要說出運(yùn)算的最終結(jié)果.
解答:解:代數(shù)式a+
c
b
的意義是a與c除以b的商的和.
故選C.
點評:用語言表達(dá)代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運(yùn)算及其順序.具體說法沒有統(tǒng)一規(guī)定,以簡明而不引起誤會為出發(fā)點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•十堰)閱讀材料:
例:說明代數(shù)式
x2+1
+
(x-3)2+4
的幾何意義,并求它的最小值.
解:
x2+1
+
(x-3)2+4
=
(x-0)2+12
+
(x-3)2+22
,如圖,建立平面直角坐標(biāo)系,點P(x,0)是x軸上一點,則
(x-0)2+12
可以看成點P與點A(0,1)的距離,
(x-3)2+22
可以看成點P與點B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長度之和,它的最小值就是PA+PB的最小值.
設(shè)點A關(guān)于x軸的對稱點為A′,則PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而點A′、B間的直線段距離最短,所以PA′+PB的最小值為線段A′B的長度.為此,構(gòu)造直角三角形A′CB,因為A′C=3,CB=3,所以A′B=3
2
,即原式的最小值為3
2

根據(jù)以上閱讀材料,解答下列問題:
(1)代數(shù)式
(x-1)2+1
+
(x-2)2+9
的值可以看成平面直角坐標(biāo)系中點P(x,0)與點A(1,1)、點B
(2,3)
(2,3)
的距離之和.(填寫點B的坐標(biāo))
(2)代數(shù)式
x2+49
+
x2-12x+37
的最小值為
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
在直角坐標(biāo)系中,已知平面內(nèi)A(x1,y2)、B(x1,y2)兩點坐標(biāo),則A、B兩點之間的距離等于
(x2-x2)2(y2-y1)2

例:說明代數(shù)式
x2+1
+
(x-3)2+4
的幾何意義,并求它的最小值.
解:
x2+1
+
(x-3)2+4
=
(x-0)2+(0-1)2
+
(x-3)2+(0-2)2
,如圖,建立平面直角坐標(biāo)系,點P(x,0)是x軸上一點,則
(x-0)2+(0-1)2
可以看成點P與點A(0,1)的距離,
(x-3)2+(0-2)2
可以看成點P與點B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長度之和,它的最小值就是PA+PB的最小值.
設(shè)點A關(guān)于x軸的對稱點為A′,則PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而點A′、B間的直線段距離最短,所以PA′+PB的最小值為線段A′B的長度.為此,構(gòu)造直角三角形A′CB,因為A′C=
3
3
,CB=
3
3
,所以A′B=
3
2
3
2
,即原式的最小值為
3
2
3
2

根據(jù)以上閱讀材料,解答下列問題:
(1)完成上述填空.
(2)代數(shù)式
(x-i)2+1
+
(x-2)2+9
的值可以看成平面直角坐標(biāo)系中點P(x,0)與點A(1,1)、點B
(2,3)
(2,3)
的距離之和.(填寫點B的坐標(biāo))
(3)求代數(shù)式
x2+49
+
x2-12x+37
的最小值.(畫圖計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖北十堰卷)數(shù)學(xué)(解析版) 題型:解答題

閱讀材料:

例:說明代數(shù)式 x2+1 + (x-3)2+4 的幾何意義,并求它的最小值.

解: x2+1 + (x-3)2+4 = (x-0)2+12 + (x-3)2+22 ,如圖,建立平面直角坐標(biāo)系,點P(x,0)是x軸上一點,則 (x-0)2+12 可以看成點P與點A(0,1)的距離, (x-3)2+22 可以看成點P與點B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長度之和,它的最小值就是PA+PB的最小值.

設(shè)點A關(guān)于x軸的對稱點為A′,則PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而點A′、B間的直線段距離最短,所以PA′+PB的最小值為線段A′B的長度.為此,構(gòu)造直角三角形A′CB,因為A′C=3,CB=3,所以A′B=3 2 ,即原式的最小值為3 2 .

根據(jù)以上閱讀材料,解答下列問題:

(1)代數(shù)式 (x-1)2+1 + (x-2)2+9 的值可以看成平面直角坐標(biāo)系中點P(x,0)與點A(1,1)、點B (2,3)的距離之和.(填寫點B的坐標(biāo))

(2)代數(shù)式 x2+49 + x2-12x+37 的最小值為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

代數(shù)式a+
c
b
的意義為( 。
A.a(chǎn)與c除b的商的和B.b除以c的商與a的和
C.a(chǎn)與c除以b的商的和D.a(chǎn)與c的和除以b的商

查看答案和解析>>

同步練習(xí)冊答案