已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
1.判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論
2.若DE的長(zhǎng)為2,cosB=,求⊙O的半徑.
1.如圖,連接CD,則CD⊥AB,
又∵AC=BC,
∴AD=BD , 即點(diǎn)D是AB的中點(diǎn).…………………… 2分
DE是⊙O的切線(xiàn).
理由是:連接OD,則DO是△ABC的中位線(xiàn),
∴DO∥AC.
又∵DE⊥AC,
∴DE⊥DO,
又∵OD是⊙O的半徑,
∴DE是⊙O的切線(xiàn).…………… 3分
2.∵AC=BC,∴∠B=∠A,
∴cos∠B=cos∠A=.
∵cos∠A== 又DE=
∴AD=3. ∴BD=AD=3
∵cos∠B==,
∴BC=9,
∴半徑為…………… 3分
解析:(1)連接OD,則OD為△ABC的中位線(xiàn),OD∥AC,已知DE⊥AC,可證DE⊥OC,證明結(jié)論;
(2)利用勾股定理和直角三角形的角邊關(guān)系推出園的直徑,然后得出園的半徑。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:專(zhuān)項(xiàng)題 題型:證明題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com