精英家教網 > 初中數學 > 題目詳情
我們知道
15
是一個無理數,那么
15
+1在哪兩個整數之間?( 。
分析:根據算術平方根的定義得到3<
15
<4,然后利用不等式性質有4<
15
<5.
解答:解:∵9<15<16,
∴3<
15
<4,
∴4<
15
<5.
故選D.
點評:本題考查了估算無理數的大小:利用完全平方數和算術平方根對無理數的大小進行估算.也考查了算術平方根.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

(2007•東城區(qū)二模)閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應把它轉化成一元一次不等式組求解.
解:把二次三項式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實數相乘,同號得正,異號得負”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數關系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應值表如下:
車速x(千米/時) 30 50 70
剎車距離S(米) 6 15 28
問該車是否超速行駛?

查看答案和解析>>

科目:初中數學 來源:東城區(qū)二模 題型:解答題

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應把它轉化成一元一次不等式組求解.
把二次三項式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實數相乘,同號得正,異號得負”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數關系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應值表如下:
車速x(千米/時) 30 50 70
剎車距離S(米) 6 15 28
問該車是否超速行駛?

查看答案和解析>>

同步練習冊答案