【題目】如圖,正方形ABCD的邊長(zhǎng)是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確的結(jié)論是( 。
A.①③B.①②③C.①③④D.①②③④
【答案】A
【解析】
由四邊形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP,故①正確;根據(jù)相似三角形的性質(zhì)得到AO2=ODOP,由OD≠OE,得到OA2≠OEOP,故②錯(cuò)誤;根據(jù)全等三角形的性質(zhì)得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF,故③正確;根據(jù)相似三角形的性質(zhì)得到BE=,求得QE=,QO=,OE=,由三角函數(shù)的定義即可得到結(jié)論.
解:∵四邊形ABCD是正方形,
∴AD=BC,∠DAB=∠ABC=90°,
∵BP=CQ,
∴AP=BQ,
在△DAP與△ABQ中,
∴△DAP≌△ABQ(SAS),
∴∠P=∠Q,
∵∠Q+∠QAB=90°,
∴∠P+∠QAB=90°,
∴∠AOP=90°,
∴AQ⊥DP,故①正確;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
∴∠DAO=∠P,
∴△DAO∽△APO,
∴,
∴AO2=ODOP,
∵AE>AB,
∴AE>AD,
∴OD≠OE,
∴OA2≠OEOP,故②錯(cuò)誤;
在△CQF與△BPE中,
∴△CQF≌△BPE(AAS),
∴CF=BE,
∴DF=CE,
在△ADF與△DCE中,
∴△ADF≌△DCE(SAS),
∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
即S△AOD=S四邊形OECF,故③正確;
∵BP=1,AB=3,
∴AP=4,
∵AD∥BC,
∴△PBE∽△PAD,
∴,
∴BE=,
∴QE=,
∵△QOE∽△PAD,
∴,
∴QO=,OE=span>,
∴AO=5﹣QO=,
∴tan∠OAE=,故④錯(cuò)誤;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一座隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系:
(1)求拋物線的解析式;
(2)一輛貨車(chē)高4m,寬2m,能否從該隧道內(nèi)通過(guò),為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車(chē)是否可以順利通過(guò),為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】忽如一夜春風(fēng)來(lái),千樹(shù)萬(wàn)樹(shù)梨花開(kāi).在清明假期期間,小梅和小北姐弟二人準(zhǔn)備一起去樂(lè)陵大孫鄉(xiāng)采摘園賞梨花,但因家中臨時(shí)有事,必須留下一人在家,于是姐弟二人采用游戲的方式來(lái)確定誰(shuí)去賞梨花.游戲規(guī)則是:在不透明的口袋中分別放入2個(gè)白色和1個(gè)黃色的乒乓球,它們除顏色外其余都相同.游戲時(shí)先由小梅從口袋中任意摸出1個(gè)乒乓球記下顏色后放回并搖勻,再由小北從口袋中摸出1個(gè)乒乓球,記下顏色.如果姐弟二人摸到的乒乓球顏色相同,則小梅贏,否則小北贏.則小北贏的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著新學(xué)校建成越來(lái)越多,絕大部分孩子已能就近入學(xué),某數(shù)學(xué)學(xué)習(xí)興趣小組對(duì)八年級(jí)一班學(xué)生上學(xué)的交通方式進(jìn)行問(wèn)卷調(diào)查,并將調(diào)查結(jié)果畫(huà)出下列兩個(gè)不完整的統(tǒng)計(jì)圖(圖1、圖2).請(qǐng)根據(jù)圖中的信息完成下列問(wèn)題.
(1)該班參與本次問(wèn)卷調(diào)查的學(xué)生共有 人;
(2)請(qǐng)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;
(3)在圖2的扇形統(tǒng)計(jì)圖中,“騎車(chē)”所在扇形的圓心角的度數(shù)是 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC.
(1)把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△DEC,使得點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在AB邊上,用尺規(guī)作圖的方法作出△DEC;(保留作圖痕跡,不寫(xiě)作法)
(2)在(1)的條件下,連接AD,求證:AD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,3),B(3,1),C(5,4).
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1;
(2)以點(diǎn)P(1,﹣1)為位似中心,在如圖所示的網(wǎng)格中畫(huà)出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1;
(3)畫(huà)出△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°的△A′B′C′,并寫(xiě)出線段BC掃過(guò)的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(操作發(fā)現(xiàn))
如圖①,在正方形ABCD中,點(diǎn)N、M分別在邊BC、CD上,連結(jié)AM、AN、MN.
∠MAN=45°,將△AMD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,點(diǎn)D與點(diǎn)B重合,得到△ABE.易證:△ANM≌△ANE,從而得DM+BN=MN.
(實(shí)踐探究)
(1)在圖①條件下,若CN=3,CM=4,則正方形ABCD的邊長(zhǎng)是 .
(2)如圖②,點(diǎn)M、N分別在邊CD、AB上,且BN=DM.點(diǎn)E、F分別在BM、DN上,∠EAF=45°,連接EF,猜想三條線段EF、BE、DF之間滿(mǎn)足的數(shù)量關(guān)系,并說(shuō)明理由.
(拓展)
(3)如圖③,在矩形ABCD中,AB=3,AD=4,點(diǎn)M、N分別在邊DC、BC上,連結(jié)AM,AN,已知∠MAN=45°,BN=1,求DM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,正方形DECF的三個(gè)頂點(diǎn)D,E,F分別落在邊AB,AC,BC上.
(1)用尺規(guī)作出正方形DECF;
(2)求正方形DECF的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“半日走遍江淮大地,安徽風(fēng)景盡在徽?qǐng)@”,位于省會(huì)合肥的徽?qǐng)@景點(diǎn)某年三月共接待游客萬(wàn)人,四月比三月旅游人數(shù)增加了,五月比四月游客人數(shù)增加了,已知三月至五月徽?qǐng)@的游客人數(shù)平均月增長(zhǎng)率為,則可列方程為( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com