如圖,F(xiàn)為正方形ABCD的對角線AC上一點,F(xiàn)E⊥AD于點E,M為CF的中點.
(1)求證:MB=MD;
(2)求證:ME=MB.
證明:(1)∵四邊形ABCD是正方形,
∴BC=DC,∠BCM=∠DCM,(1分)
又MC=MC,∴△BCM≌△DCM,
∴MB=MD;(4分)

(2)在直角梯形DEFC中,CDFE,
取DE的中點N,連接MN,
∵M為CF的中點,∴MNCD,(6分)
又CD⊥DE,∴MN⊥DE,
∴MN是線段DE的垂直平分線,
∴MD=ME,(7分)
由(1)知,MB=MD,∴ME=MB.(8分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長是2,E、F分別在BC、CD兩邊上,且E、F與BC、CD兩邊的端點不重合,△AEF的面積是1,設(shè)BE=x,DF=y,求y關(guān)于x的函數(shù)解析式及自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,ABCD是正方形,G是BC上的一點,DE⊥AG于E,BF⊥AG于F.
(1)求證:△ABF≌△DAE;
(2)求證:DE=EF+FB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方形上連接等腰直角三角形,不斷反復(fù)同一個過程,假設(shè)第一個正方形的邊長為單位1.第一個正方形與第一個等腰三角形的面積和記作S1;第二個正方形與第二個等腰直角三角形的面積和記作S2;…;那么第n個正方形與第n個等腰直角三角形的面積和Sn用含n的代數(shù)式表示為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD中,E、F分別在邊BC、CD上,∠EAF=45°,BE=2,CF=3.求:正方形的邊長.如圖,正方形ABCD中,E、F分別在邊BC、CD上,∠EAF=45°,BE=2,CF=3.求:正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知三個邊長分別為10,6,4的正方形如圖排列(點A,B,E,H在同一條直線上),DH交EF于R,則線段RN的值為(  )
A.1B.2C.2.5D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點O(0,0),B(0,1)是正方形OBB1C的兩個頂點,以對角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對角線OB2為一邊作正方形OB2B3C2,依次下去,則點B7的坐標是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知直線l1l2l3l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個頂點分別在四條直線上,則sinα=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

正方形具有而菱形不一定具有的性質(zhì)是( 。
A.對角線互相垂直B.對角線平分一組對角
C.對角線相等D.對角線互相平分

查看答案和解析>>

同步練習(xí)冊答案