【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AP交x軸于點(diǎn)P(p,0),交y軸于點(diǎn)A(0,a),且a、p滿足.
(1)求直線AP的解析式;
(2)如圖1,點(diǎn)P關(guān)于y軸的對稱點(diǎn)為Q,R(0,2),點(diǎn)S在直線AQ上,且SR=SA,求直線RS的解析式和點(diǎn)S的坐標(biāo);
(3)如圖2,點(diǎn)B(﹣2,b)為直線AP上一點(diǎn),以AB為斜邊作等腰直角三角形ABC,點(diǎn)C在第一象限,D為線段OP上一動點(diǎn),連接DC,以DC為直角邊,點(diǎn)D為直角頂點(diǎn)作等腰三角形DCE,EF⊥x軸,F為垂足,下列結(jié)論:①2DP+EF的值不變;②的值不變;其中只有一個(gè)結(jié)論正確,請你選擇出正確的結(jié)論,并求出其定值.
【答案】(1)y=﹣3x﹣3;(2)S(,﹣), y=﹣3x+2;(3)②;定值為.
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)列式求出a、p的值,從而得到點(diǎn)A、P的坐標(biāo),然后利用待定系數(shù)法求直線的解析式;
(2)根據(jù)關(guān)于y軸的點(diǎn)的對稱求出點(diǎn)Q的坐標(biāo),再利用待定系數(shù)法求出直線AQ的解析式,設(shè)出點(diǎn)S的坐標(biāo),然后利用兩點(diǎn)間的距離公式列式進(jìn)行計(jì)算即可求出點(diǎn)S的坐標(biāo),再利用待定系數(shù)法求解直線RS的解析式;
(3)根據(jù)點(diǎn)B的橫坐標(biāo)為-2,可知點(diǎn)P為AB的中點(diǎn),然后求出點(diǎn)B得到坐標(biāo),連接PC,過點(diǎn)C作CG⊥x軸于點(diǎn)G,利用角角邊證明△APO與△PCG全等,根據(jù)全等三角形對應(yīng)邊相等可得PG=AO,CG=PO,再根據(jù)△DCE是等腰直角三角形,利用角角邊證明△CDG與△EDF全等,根據(jù)全等三角形對應(yīng)邊相等可得DG=EF,然后用EF表示出DP的長度,然后代入兩個(gè)結(jié)論進(jìn)行計(jì)算即可找出正確的結(jié)論并得到定值.
(1)根據(jù)題意得,a+3=0,p+1=0,
解得a=﹣3,p=﹣1,
∴點(diǎn)A、P的坐標(biāo)分別為A(0,﹣3)、P(﹣1,0),
設(shè)直線AP的解析式為y=mx+n,
則,
解得,
∴直線AP的解析式為y=﹣3x﹣3;
(2)根據(jù)題意,點(diǎn)Q的坐標(biāo)為(1,0),
設(shè)直線AQ的解析式為y=kx+c,
則,
解得,
∴直線AQ的解析式為y=3x﹣3,
設(shè)點(diǎn)S的坐標(biāo)為(x,3x﹣3),
則SR=,
SA=,
∵SR=SA,
∴=,
解得x=,
∴3x﹣3=3×﹣3=﹣,
∴點(diǎn)S的坐標(biāo)為S(,﹣),
設(shè)直線RS的解析式為y=ex+f,
則,
解得,
∴直線RS的解析式為y=﹣3x+2;
(3)∵點(diǎn)B(﹣2,b),
∴點(diǎn)P為AB的中點(diǎn),
連接PC,過點(diǎn)C作CG⊥x軸于點(diǎn)G,
∵△ABC是等腰直角三角形,
∴PC=PA=AB,PC⊥AP,
∴∠CPG+∠APO=90°,∠APO+∠PAO=90°,
∴∠CPG=∠PAO,
在△APO與△PCG中,
,
∴△APO≌△PCG(AAS),
∴PG=AO=3,CG=PO,
∵△DCE是等腰直角三角形,
∴CD=DE,∠CDG+∠EDF=90°,
又∵EF⊥x軸,
∴∠DEF+∠EDF=90°,
∴∠CDG=∠DEF,
在△CDG與△EDF中,
,
∴△CDG≌△EDF(AAS),
∴DG=EF,
∴DP=PG﹣DG=3﹣EF,
①2DP+EF=2(3﹣EF)+EF=6﹣EF,
∴2DP+EF的值隨點(diǎn)D的變化而變化,不是定值,
②,
的值與點(diǎn)D的變化無關(guān),是定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①若|a|=-b,|b|=b,則a=b=0;②若-a不是正數(shù),則a為非負(fù)數(shù);③|-a|=(-a); ④若,則; ⑤若a+b=0,則a3+b3=0; ⑥若|a|>b,則a2>b2;其中正確的結(jié)論有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人用元購買了套兒童服裝,準(zhǔn)備以一定價(jià)格出售,如果以每套兒童服裝元的價(jià)格為標(biāo)準(zhǔn),超出的記作正數(shù),不足的記作負(fù)數(shù),記錄如下:,,,,,,,.(單位:元)
(1)最高售價(jià)比最低高出多少?
(2)當(dāng)他賣完這套兒童服裝后是盈利還是虧損?盈利(或虧損)了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點(diǎn)M,點(diǎn)F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點(diǎn)E是BC的中點(diǎn),若點(diǎn)P以1cm/s秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動;點(diǎn)Q同時(shí)以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動,點(diǎn)P運(yùn)動到F點(diǎn)時(shí)停止運(yùn)動,點(diǎn)Q也同時(shí)停止運(yùn)動,當(dāng)點(diǎn)P運(yùn)動__秒時(shí),以P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某?萍紝(shí)踐社團(tuán)制作實(shí)踐設(shè)備,小明的操作過程如下:
①小明取出老師提供的圓形細(xì)鐵環(huán),先通過在圓一章中學(xué)到的知識找到圓心O,再任意找出圓O的一條直徑標(biāo)記為AB(如圖1),測量出AB=4分米;
②將圓環(huán)進(jìn)行翻折使點(diǎn)B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點(diǎn)分別標(biāo)記為C、D(如圖2);
③用一細(xì)橡膠棒連接C、D兩點(diǎn)(如圖3);
④計(jì)算出橡膠棒CD的長度.
小明計(jì)算橡膠棒CD的長度為( )
A. 2分米 B. 2分米 C. 3分米 D. 3分米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)經(jīng)過某種變換后得到點(diǎn),我們把點(diǎn)叫做點(diǎn)的終結(jié)點(diǎn).已知點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,這樣依次得到、、、、…、…,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB垂足為D,AE平分∠CAB交CD于點(diǎn)F,交BC于點(diǎn)E,EH⊥AB,垂足為H,連接FH.
求證:(1)CF=CE
(2)四邊形CFHE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別交x、y軸于點(diǎn)A、B,直線BC分別交x、y軸于點(diǎn)C、B,點(diǎn)A的坐標(biāo)為(2,0),∠ABO=30°,且AB⊥BC.
(1)求直線BC和AB的解析式;
(2)將點(diǎn)B沿某條直線折疊到點(diǎn)O,折痕分別交BC、BA于點(diǎn)E、D,在x軸上是否存在點(diǎn)F,使得點(diǎn)D、E、F為頂點(diǎn)的三角形是以DE為斜邊的直角三角形?若存在,請求出F點(diǎn)坐標(biāo);若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線滿足條件:(1)在時(shí), 隨的增大而增大,在時(shí), 隨的增大而減小;(2)與軸有兩個(gè)交點(diǎn),且兩個(gè)交點(diǎn)間的距離小于.以下四個(gè)結(jié)論:①;②;③;④,說法正確的個(gè)數(shù)有( )個(gè)
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com