已知:關(guān)于x的方程x2-3x+2k-1=0的兩個實數(shù)根的平方和不小于這兩個根的積,且反比例函數(shù)y=數(shù)學(xué)公式的圖象的兩個分支在各自的象限內(nèi)y隨x的增大而減。鬂M足上述條件的k的整數(shù)值.

解:∵關(guān)于x的方程x2-3x+2k-1=0有兩個實數(shù)根,
∴△=(-3)2-4(2k-1)≥0,解得k≤,
設(shè)方程x2-3x+2k-1=0的兩個根為x1、x2,則x1+x2=3,x1•x2=2k-1,
∵x12+x22≥x1x2,即(x1+x22-3x1x2≥0,
∴9-3(2k-1)≥0,解得k≤2,
∴k≤,
∵反比例函數(shù)y=的圖象的兩個分支在各自的象限內(nèi)y隨x的增大而減小,
∴1+2k>0,即k>-,
∴k的取值范圍為-<k≤,
∴k的整數(shù)值為0、1.
分析:先根據(jù)根的判別式得到△=(-3)2-4(2k-1)≥0,解得k≤;再根據(jù)根與系數(shù)的關(guān)系得x1+x2=3,x1•x2=2k-1,由x12+x22≥x1x2得到9-3(2k-1)≥0,解得k≤2,
然后利用反比例函數(shù)的性質(zhì)得到1+2k>0,即k>-,則k的取值范圍為-<k≤,再找出此范圍內(nèi)的整數(shù)即可.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個為x1,x2,則x1+x2=-,x1•x2=.也考查了一元二次方程根的判別式以及反比例函數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實數(shù)量,方程總有實數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、已知:關(guān)于x的方程x2+2x=3-4k有兩個不相等的實數(shù)根(其中k為實數(shù))
(1)則k的取值范圍是
k<1
;
(2)若k為非負整數(shù),則此時方程的根是
-3或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、已知:關(guān)于x的方程x2-kx-2=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩根為x1,x2,如果2(x1+x2)>x1x2,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程ax2-(1-3a)x+2a-1=0,求證:a取任何實數(shù)時,方程ax2-(1-3a)x+2a-1=0總有實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程x2+kx-12=0,求證:方程有兩個不相等的實數(shù)根.

查看答案和解析>>

同步練習(xí)冊答案