【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC、CD上滑動(dòng),且E、F不與B、C、D重合.當(dāng)點(diǎn)E、FBC、CD上滑動(dòng)時(shí),則△CEF的面積最大值是____

【答案】

【解析】如圖,連接AC四邊形ABCD為菱形,BAD=120°∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3∵∠BAD=120°,∴∠ABC=60°,∴△ABCACD為等邊三角形,∴∠4=60°AC=AB

ABEACF,∵∠1=3,AC=ACABC=4,∴△ABE≌△ACFASA),SABE=SACF,S四邊形AECF=SAEC+SACF=SAEC+SABE=SABC是定值,AHBCH點(diǎn)BH=2,S四邊形AECF=SABC=BCAH=BC=垂線段最短可知當(dāng)正三角形AEF的邊AEBC垂直時(shí),AE最短∴△AEF的面積會(huì)隨著AE的變化而變化,且當(dāng)AE最短時(shí),正三角形AEF的面積會(huì)最小,SCEF=S四邊形AECFSAEF,則此時(shí)CEF的面積就會(huì)最大,SCEF=S四邊形AECFSAEF=×× =

故答案為: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1已知如圖1,等腰直角三角形ABC,B=90°,AD是∠BAC的外角平分線CB邊的延長(zhǎng)線于點(diǎn)D

求證BD=AB+AC

2)對(duì)于任意三角形ABC,ABC=2∠C,AD是∠BAC的外角平分線CB邊的延長(zhǎng)線于點(diǎn)D,如圖2請(qǐng)你寫出線段AC、ABBD之間的數(shù)量關(guān)系并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線EFBC分別交ACB、外角ACD的平分線于點(diǎn)E、F.

(1)若CE=8,CF=6,求OC的長(zhǎng);

(2)連接AE、AF.問:當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn)

1)(m-2n)(m2+4n2)(m+2n

2)(x+2y+z)(x+2y-z

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①經(jīng)過兩點(diǎn)有且只有一條直線;②直線比射線長(zhǎng);③兩點(diǎn)之間的所有連線中直線最短;④連接兩點(diǎn)的線段叫兩點(diǎn)之間的距離;其中正確的有(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場(chǎng)部分平面圖如圖所示,C,E,A在同一直線上,D,E,B在同一直線上,測(cè)得A處與E處的距離為80 m,C處與D處的距離為34 m,C90°,ABE90°,BAE30°.( ≈1.4, ≈1.7)

(1)求旋轉(zhuǎn)木馬E處到出口B處的距離

(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥CD,CE、BE的交點(diǎn)為E,現(xiàn)作如下操作:

第一次操作,分別作∠ABE∠DCE的平分線,交點(diǎn)為E1,

第二次操作,分別作∠ABE1∠DCE1的平分線,交點(diǎn)為E2,

第三次操作,分別作∠ABE2∠DCE2的平分線,交點(diǎn)為E3,

n次操作,分別作∠ABEn1∠DCEn1的平分線,交點(diǎn)為En

∠En=1度,那∠BEC等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC外角的平分線,已知∠BAC=∠ACD

1)求證:△ABC≌△CDA;

2)若∠B=60°,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】絕對(duì)值小于3的整數(shù)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案